ssencrypt.py 6.84 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
"""
NOTE: Anytime a `key` is passed into a function here, we assume it's a raw byte
string. It should *not* be a string representation of a hex value. In other
words, passing the `str` value of
`"32fe72aaf2abb44de9e161131b5435c8d37cbdb6f5df242ae860b283115f2dae"` is bad.
You want to pass in the result of calling .decode('hex') on that, so this instead:
"'2\xfer\xaa\xf2\xab\xb4M\xe9\xe1a\x13\x1bT5\xc8\xd3|\xbd\xb6\xf5\xdf$*\xe8`\xb2\x83\x11_-\xae'"

The RSA functions take any key format that RSA.importKey() accepts, so...

An RSA public key can be in any of the following formats:
* X.509 subjectPublicKeyInfo DER SEQUENCE (binary or PEM encoding)
* PKCS#1 RSAPublicKey DER SEQUENCE (binary or PEM encoding)
* OpenSSH (textual public key only)

An RSA private key can be in any of the following formats:
* PKCS#1 RSAPrivateKey DER SEQUENCE (binary or PEM encoding)
* PKCS#8 PrivateKeyInfo DER SEQUENCE (binary or PEM encoding)
* OpenSSH (textual public key only)

In case of PEM encoding, the private key can be encrypted with DES or 3TDES
according to a certain pass phrase. Only OpenSSL-compatible pass phrases are
supported.
"""
import base64
26 27 28
import binascii
import hmac
import logging
29
from hashlib import md5, sha256
30 31 32 33 34

from Crypto import Random
from Crypto.Cipher import AES, PKCS1_OAEP
from Crypto.PublicKey import RSA

35
log = logging.getLogger(__name__)
36

37

38
def encrypt_and_encode(data, key):
39
    """ Encrypts and endcodes `data` using `key' """
40 41
    return base64.urlsafe_b64encode(aes_encrypt(data, key))

42

43
def decode_and_decrypt(encoded_data, key):
44
    """ Decrypts and decodes `data` using `key' """
45 46
    return aes_decrypt(base64.urlsafe_b64decode(encoded_data), key)

47

48 49 50 51 52 53 54 55
def aes_encrypt(data, key):
    """
    Return a version of the `data` that has been encrypted to
    """
    cipher = aes_cipher_from_key(key)
    padded_data = pad(data)
    return cipher.encrypt(padded_data)

56

57
def aes_decrypt(encrypted_data, key):
58 59 60
    """
    Decrypt `encrypted_data` using `key`
    """
61 62 63 64
    cipher = aes_cipher_from_key(key)
    padded_data = cipher.decrypt(encrypted_data)
    return unpad(padded_data)

65

66 67 68 69 70 71 72 73
def aes_cipher_from_key(key):
    """
    Given an AES key, return a Cipher object that has `encrypt()` and
    `decrypt()` methods. It will create the cipher to use CBC mode, and create
    the initialization vector as Software Secure expects it.
    """
    return AES.new(key, AES.MODE_CBC, generate_aes_iv(key))

74

75 76 77 78 79 80 81
def generate_aes_iv(key):
    """
    Return the initialization vector Software Secure expects for a given AES
    key (they hash it a couple of times and take a substring).
    """
    return md5(key + md5(key).hexdigest()).hexdigest()[:AES.block_size]

82

83 84 85
def random_aes_key():
    return Random.new().read(32)

86

87
def pad(data):
88
    """ Pad the given `data` such that it fits into the proper AES block size """
89 90 91
    bytes_to_pad = AES.block_size - len(data) % AES.block_size
    return data + (bytes_to_pad * chr(bytes_to_pad))

92

93
def unpad(padded_data):
94
    """  remove all padding from `padded_data` """
95 96 97
    num_padded_bytes = ord(padded_data[-1])
    return padded_data[:-num_padded_bytes]

98

99 100 101 102 103 104 105 106 107
def rsa_encrypt(data, rsa_pub_key_str):
    """
    `rsa_pub_key` is a string with the public key
    """
    key = RSA.importKey(rsa_pub_key_str)
    cipher = PKCS1_OAEP.new(key)
    encrypted_data = cipher.encrypt(data)
    return encrypted_data

108

109
def rsa_decrypt(data, rsa_priv_key_str):
110 111 112
    """
    When given some `data` and an RSA private key, decrypt the data
    """
113 114 115
    key = RSA.importKey(rsa_priv_key_str)
    cipher = PKCS1_OAEP.new(key)
    return cipher.decrypt(data)
116

117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def has_valid_signature(method, headers_dict, body_dict, access_key, secret_key):
    """
    Given a message (either request or response), say whether it has a valid
    signature or not.
    """
    _, expected_signature, _ = generate_signed_message(
        method, headers_dict, body_dict, access_key, secret_key
    )

    authorization = headers_dict["Authorization"]
    auth_token, post_signature = authorization.split(":")
    _, post_access_key = auth_token.split()

    if post_access_key != access_key:
        log.error("Posted access key does not match ours")
        log.debug("Their access: %s; Our access: %s", post_access_key, access_key)
        return False

    if post_signature != expected_signature:
        log.error("Posted signature does not match expected")
        log.debug("Their sig: %s; Expected: %s", post_signature, expected_signature)
        return False

    return True

143

144 145 146 147
def generate_signed_message(method, headers_dict, body_dict, access_key, secret_key):
    """
    Returns a (message, signature) pair.
    """
148
    message = signing_format_message(method, headers_dict, body_dict)
149

150 151
    # hmac needs a byte string for it's starting key, can't be unicode.
    hashed = hmac.new(secret_key.encode('utf-8'), message, sha256)
152 153 154 155 156 157
    signature = binascii.b2a_base64(hashed.digest()).rstrip('\n')
    authorization_header = "SSI {}:{}".format(access_key, signature)

    message += '\n'
    return message, signature, authorization_header

158

159 160 161 162 163 164 165 166 167 168 169 170
def signing_format_message(method, headers_dict, body_dict):
    """
    Given a dictionary of headers and a dictionary of the JSON for the body,
    will return a str that represents the normalized version of this messsage
    that will be used to generate a signature.
    """
    headers_str = "{}\n\n{}".format(method, header_string(headers_dict))
    body_str = body_string(body_dict)
    message = headers_str + body_str

    return message

171

172 173 174 175 176 177 178 179 180 181 182
def header_string(headers_dict):
    """Given a dictionary of headers, return a canonical string representation."""
    header_list = []

    if 'Content-Type' in headers_dict:
        header_list.append(headers_dict['Content-Type'] + "\n")
    if 'Date' in headers_dict:
        header_list.append(headers_dict['Date'] + "\n")
    if 'Content-MD5' in headers_dict:
        header_list.append(headers_dict['Content-MD5'] + "\n")

183 184
    return "".join(header_list)  # Note that trailing \n's are important

185

186
def body_string(body_dict, prefix=""):
187
    """
188 189 190
    Return a canonical string representation of the body of a JSON request or
    response. This canonical representation will be used as an input to the
    hashing used to generate a signature.
191 192 193
    """
    body_list = []
    for key, value in sorted(body_dict.items()):
194 195 196 197 198 199 200 201 202 203 204 205
        if isinstance(value, (list, tuple)):
            for i, arr in enumerate(value):
                if isinstance(arr, dict):
                    body_list.append(body_string(arr, u"{}.{}.".format(key, i)))
                else:
                    body_list.append(u"{}.{}:{}\n".format(key, i, arr).encode('utf-8'))
        elif isinstance(value, dict):
            body_list.append(body_string(value, key + ":"))
        else:
            if value is None:
                value = "null"
            body_list.append(u"{}{}:{}\n".format(prefix, key, value).encode('utf-8'))
206

207
    return "".join(body_list)  # Note that trailing \n's are important