Commit 2b224a74 by Will Daly

Merge pull request #333 from edx/will/student-training-in-flight

Student training in-flight changes
parents 64b3df76 5295df1d
......@@ -31,18 +31,29 @@ def submitter_is_finished(submission_uuid, requirements): # pylint:disable=W06
Args:
submission_uuid (str): The UUID of the student's submission.
requirements (dict): Not used.
requirements (dict): Must contain "num_required" indicating
the number of examples the student must assess.
Returns:
bool
Raises:
StudentTrainingRequestError
"""
try:
num_required = int(requirements['num_required'])
except KeyError:
raise StudentTrainingRequestError(u'Requirements dict must contain "num_required" key')
except ValueError:
raise StudentTrainingRequestError(u'Number of requirements must be an integer')
try:
workflow = StudentTrainingWorkflow.objects.get(submission_uuid=submission_uuid)
except StudentTrainingWorkflow.DoesNotExist:
return False
else:
return workflow.is_complete
return workflow.num_completed >= num_required
def assessment_is_finished(submission_uuid, requirements): # pylint:disable=W0613
......@@ -147,8 +158,9 @@ def validate_training_examples(rubric, examples):
]
for criterion in rubric['criteria']
}
except (ValueError, KeyError):
except (ValueError, KeyError) as ex:
msg = _(u"Could not parse serialized rubric")
logger.warning("{}: {}".format(msg, ex))
return [msg]
# Check each example
......@@ -189,161 +201,31 @@ def validate_training_examples(rubric, examples):
return errors
def create_training_workflow(submission_uuid, rubric, examples):
"""
Start the training workflow.
Args:
submission_uuid (str): The UUID of the student's submission.
rubric (dict): Serialized rubric model.
examples (list): The serialized training examples the student will need to assess.
Returns:
None
Raises:
StudentTrainingRequestError
StudentTrainingInternalError
Example usage:
>>> options = [
>>> {
>>> "order_num": 0,
>>> "name": "poor",
>>> "explanation": "Poor job!",
>>> "points": 0,
>>> },
>>> {
>>> "order_num": 1,
>>> "name": "good",
>>> "explanation": "Good job!",
>>> "points": 1,
>>> },
>>> {
>>> "order_num": 2,
>>> "name": "excellent",
>>> "explanation": "Excellent job!",
>>> "points": 2,
>>> },
>>> ]
>>>
>>> rubric = {
>>> "prompt": "Write an essay!",
>>> "criteria": [
>>> {
>>> "order_num": 0,
>>> "name": "vocabulary",
>>> "prompt": "How varied is the vocabulary?",
>>> "options": options
>>> },
>>> {
>>> "order_num": 1,
>>> "name": "grammar",
>>> "prompt": "How correct is the grammar?",
>>> "options": options
>>> }
>>> ]
>>> }
>>>
>>> examples = [
>>> {
>>> 'answer': u'Lorem ipsum',
>>> 'options_selected': {
>>> 'vocabulary': 'good',
>>> 'grammar': 'excellent'
>>> }
>>> },
>>> {
>>> 'answer': u'Doler',
>>> 'options_selected': {
>>> 'vocabulary': 'good',
>>> 'grammar': 'poor'
>>> }
>>> }
>>> ]
>>>
>>> create_training_workflow("5443ebbbe2297b30f503736e26be84f6c7303c57", rubric, examples)
"""
try:
# Check that examples were provided
if len(examples) == 0:
msg = (
u"No examples provided for student training workflow "
u"(attempted to create workflow for student with submission UUID {})"
).format(submission_uuid)
raise StudentTrainingRequestError(msg)
# Ensure that a workflow doesn't already exist for this submission
already_exists = StudentTrainingWorkflow.objects.filter(
submission_uuid=submission_uuid
).exists()
if already_exists:
msg = (
u"Student training workflow already exists for the student "
u"associated with submission UUID {}"
).format(submission_uuid)
raise StudentTrainingRequestError(msg)
# Create the training examples
try:
examples = deserialize_training_examples(examples, rubric)
except (InvalidRubric, InvalidTrainingExample) as ex:
logger.exception(
"Could not deserialize training examples for submission UUID {}".format(submission_uuid)
)
raise StudentTrainingRequestError(ex.message)
# Create the workflow
try:
StudentTrainingWorkflow.create_workflow(submission_uuid, examples)
except sub_api.SubmissionNotFoundError as ex:
raise StudentTrainingRequestError(ex.message)
except DatabaseError:
msg = (
u"Could not create student training workflow "
u"with submission UUID {}"
).format(submission_uuid)
logger.exception(msg)
raise StudentTrainingInternalError(msg)
def get_workflow_status(submission_uuid):
def get_num_completed(submission_uuid):
"""
Get the student's position in the training workflow.
Get the number of training examples the student has assessed successfully.
Args:
submission_uuid (str): The UUID of the student's submission.
Returns:
dict: Serialized TrainingStatus
int: The number of completed training examples
Raises:
StudentTrainingRequestError
StudentTrainingInternalError
Example usage:
>>> get_workflow_status("5443ebbbe2297b30f503736e26be84f6c7303c57")
{
'num_items_completed': 1,
'num_items_available': 3
}
>>> get_num_completed("5443ebbbe2297b30f503736e26be84f6c7303c57")
2
"""
try:
try:
workflow = StudentTrainingWorkflow.objects.get(submission_uuid=submission_uuid)
except StudentTrainingWorkflow.DoesNotExist:
msg = u"Student training workflow does not exist for submission UUID {}".format(submission_uuid)
raise StudentTrainingRequestError(msg)
num_completed, num_total = workflow.status
return {
"num_completed": num_completed,
"num_total": num_total
}
return 0
else:
return workflow.num_completed
except DatabaseError:
msg = (
u"An unexpected error occurred while "
......@@ -353,12 +235,22 @@ def get_workflow_status(submission_uuid):
raise StudentTrainingInternalError(msg)
def get_training_example(submission_uuid):
def get_training_example(submission_uuid, rubric, examples):
"""
Retrieve a training example for the student to assess.
This will implicitly create a workflow for the student if one does not yet exist.
NOTE: We include the rubric in the returned dictionary to handle
the case in which the instructor changes the rubric definition
while the student is assessing the training example. Once a student
starts on a training example, the student should see the same training
example consistently. However, the next training example the student
retrieves will use the updated rubric.
Args:
submission_uuid (str): The UUID of the student's submission.
rubric (dict): Serialized rubric model.
examples (list): List of serialized training examples.
Returns:
dict: The training example with keys "answer", "rubric", and "options_selected".
......@@ -380,7 +272,7 @@ def get_training_example(submission_uuid):
>>> }
>>> ]
>>>
>>> get_training_example("5443ebbbe2297b30f503736e26be84f6c7303c57")
>>> get_training_example("5443ebbbe2297b30f503736e26be84f6c7303c57", rubric, examples)
{
'answer': u'Lorem ipsum',
'rubric': {
......@@ -407,26 +299,38 @@ def get_training_example(submission_uuid):
}
"""
# Find a workflow for the student
try:
workflow = StudentTrainingWorkflow.objects.get(submission_uuid=submission_uuid)
# Validate the training examples
errors = validate_training_examples(rubric, examples)
if len(errors) > 0:
msg = _(u"Training examples do not match the rubric: {errors}").format(
errors="\n".join(errors)
)
raise StudentTrainingRequestError(msg)
# Find the next incomplete item in the workflow
item = workflow.next_incomplete_item
if item is None:
return None
else:
return serialize_training_example(item.training_example)
except StudentTrainingWorkflow.DoesNotExist:
msg = (
u"No student training workflow exists for the student "
u"associated with submission UUID {}"
).format(submission_uuid)
# Get or create the workflow
workflow = StudentTrainingWorkflow.get_or_create_workflow(submission_uuid=submission_uuid)
# Get or create the training examples
examples = deserialize_training_examples(examples, rubric)
# Pick a training example that the student has not yet completed
# If the student already started a training example, then return that instead.
next_example = workflow.next_training_example(examples)
return None if next_example is None else serialize_training_example(next_example)
except (InvalidRubric, InvalidTrainingExample) as ex:
logger.exception(
"Could not deserialize training examples for submission UUID {}".format(submission_uuid)
)
raise StudentTrainingRequestError(ex.message)
except sub_api.SubmissionNotFoundError as ex:
msg = _(u"Could not retrieve the submission with UUID {}").format(submission_uuid)
logger.exception(msg)
raise StudentTrainingRequestError(msg)
except DatabaseError:
msg = (
u"Could not retrieve next item in"
u" student training workflow with submission UUID {}"
msg = _(
u"Could not retrieve a training example "
u"for the student with submission UUID {}"
).format(submission_uuid)
logger.exception(msg)
raise StudentTrainingInternalError(msg)
......@@ -436,6 +340,8 @@ def assess_training_example(submission_uuid, options_selected, update_workflow=T
"""
Assess a training example and update the workflow.
This must be called *after* `get_training_example()`.
Args:
submission_uuid (str): The UUID of the student's submission.
options_selected (dict): The options the student selected.
......@@ -466,8 +372,8 @@ def assess_training_example(submission_uuid, options_selected, update_workflow=T
try:
workflow = StudentTrainingWorkflow.objects.get(submission_uuid=submission_uuid)
# Find the next incomplete item in the workflow
item = workflow.next_incomplete_item
# Find the item the student is currently working on
item = workflow.current_item
if item is None:
msg = (
u"No items are available in the student training workflow associated with "
......
"""
Django models specific to the student training assessment type.
"""
from django.db import models, transaction
from django.db import models
from django.utils import timezone
from submissions import api as sub_api
from .training import TrainingExample
......@@ -27,14 +27,12 @@ class StudentTrainingWorkflow(models.Model):
app_label = "assessment"
@classmethod
@transaction.commit_on_success
def create_workflow(cls, submission_uuid, examples):
def get_or_create_workflow(cls, submission_uuid):
"""
Create a student training workflow.
Args:
submission_uuid (str): The UUID of the submission from the student being trained.
examples (list of TrainingExamples): The training examples to show the student.
Returns:
StudentTrainingWorkflow
......@@ -43,70 +41,105 @@ class StudentTrainingWorkflow(models.Model):
SubmissionError: There was an error retrieving the submission.
"""
# Try to retrieve an existing workflow
# If we find one, return it immediately
try:
return cls.objects.get(submission_uuid=submission_uuid) # pylint:disable=E1101
except cls.DoesNotExist:
pass
# Retrieve the student item info
submission = sub_api.get_submission_and_student(submission_uuid)
student_item = submission['student_item']
# Create the workflow
workflow = cls.objects.create(
return cls.objects.create(
submission_uuid=submission_uuid,
student_id=student_item['student_id'],
item_id=student_item['item_id'],
course_id=student_item['course_id']
)
# Create workflow items for each example
for order_num, example in enumerate(examples):
StudentTrainingWorkflowItem.objects.create(
workflow=workflow,
order_num=order_num,
training_example=example,
)
return workflow
@property
def status(self):
def num_completed(self):
"""
The student's status within the workflow (num steps completed / num steps available).
Return the number of training examples that the
student successfully assessed.
Returns:
tuple of `(num_completed, num_total)`, both integers
int
"""
items = self.items.all() # pylint:disable=E1101
num_complete = sum([1 if item.is_complete else 0 for item in items])
num_total = len(items)
return num_complete, num_total
return self.items.filter(completed_at__isnull=False).count() # pylint:disable=E1101
@property
def is_complete(self):
def next_training_example(self, examples):
"""
Check whether all items in the workflow are complete.
Return the next training example for the student to assess.
If the student is already working on an example, return that.
Otherwise, choose an example the student hasn't seen
from the list of available examples.
Args:
examples (list of TrainingExample): Training examples to choose from.
Returns:
bool
TrainingExample or None
"""
num_incomplete = self.items.filter(completed_at__isnull=True).count() # pylint:disable=E1101
return num_incomplete == 0
# Fetch all the items for this workflow from the database
# Since Django's `select_related` does not follow reverse keys
# we perform the filter ourselves.
items = StudentTrainingWorkflowItem.objects.select_related(
'training_example'
).filter(workflow=self)
# If we're already working on an item, then return that item
incomplete_items = [item for item in items if not item.is_complete]
if len(incomplete_items) > 0:
return incomplete_items[0].training_example
# Otherwise, pick an item that we have not completed
# from the list of examples.
completed_examples = [
item.training_example for item in items
]
available_examples = [
available for available in examples
if available not in completed_examples
]
# If there are no more items available, return None
if len(available_examples) == 0:
return None
# Otherwise, create a new workflow item for the example
# and add it to the workflow
else:
order_num = len(items) + 1
next_example = available_examples[0]
StudentTrainingWorkflowItem.objects.create(
workflow=self,
order_num=order_num,
training_example=next_example
)
return next_example
@property
def next_incomplete_item(self):
def current_item(self):
"""
Find the next incomplete item in the workflow.
Return the item the student is currently working on,
or None.
Returns:
StudentTrainingWorkflowItem or None
"""
next_incomplete = self.items.filter( # pylint:disable=E1101
next_incomplete = self.items.select_related(
'training_example'
).filter( # pylint:disable=E1101
completed_at__isnull=True
).order_by('order_num')[:1]
if len(next_incomplete) > 0:
return next_incomplete[0]
else:
return None
return None if len(next_incomplete) == 0 else next_incomplete[0]
class StudentTrainingWorkflowItem(models.Model):
......
......@@ -3,6 +3,7 @@ Django models for training (both student and AI).
"""
import json
from hashlib import sha1
from django.core.cache import cache
from django.db import models
from .base import Rubric, CriterionOption
......@@ -22,29 +23,34 @@ class TrainingExample(models.Model):
# SHA1 hash
content_hash = models.CharField(max_length=40, unique=True, db_index=True)
# Version for models serialized to the cache
# Increment this number whenever you update this model!
CACHE_KEY_VERSION = 1
class Meta:
app_label = "assessment"
@classmethod
def create_example(cls, answer, options_ids, rubric):
def create_example(cls, answer, options_selected, rubric):
"""
Create a new training example.
Args:
answer (JSON-serializable): The answer associated with the training example.
option_ids (iterable of int): Selected option IDs for the training example.
options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example.
Returns:
TrainingExample
"""
content_hash = cls.calculate_hash(answer, options_ids, rubric)
content_hash = cls.calculate_hash(answer, options_selected, rubric)
example = TrainingExample.objects.create(
content_hash=content_hash,
raw_answer=json.dumps(answer),
rubric=rubric
)
options_ids = rubric.options_ids(options_selected)
for option in CriterionOption.objects.filter(pk__in=list(options_ids)):
example.options_selected.add(option)
......@@ -71,19 +77,50 @@ class TrainingExample(models.Model):
dict: maps criterion names to selected option names
"""
return {
option.criterion.name: option.name
for option in self.options_selected.all() # pylint:disable=E1101
}
# Since training examples are immutable, we can safely cache this
cache_key = self.cache_key_serialized(attribute="options_selected_dict")
options_selected = cache.get(cache_key)
if options_selected is None:
options_selected = {
option.criterion.name: option.name
for option in self.options_selected.all() # pylint:disable=E1101
}
cache.set(cache_key, options_selected)
return options_selected
def cache_key_serialized(self, attribute=None):
"""
Create a cache key based on the content hash
for serialized versions of this model.
Kwargs:
attribute: The name of the attribute being serialized.
If not specified, assume that we are serializing the entire model.
Returns:
str: The cache key
"""
if attribute is None:
key_template = u"TrainingExample.json.v{version}.{content_hash}"
else:
key_template = u"TrainingExample.{attribute}.json.v{version}.{content_hash}"
cache_key = key_template.format(
version=self.CACHE_KEY_VERSION,
content_hash=self.content_hash,
attribute=attribute
)
return cache_key
@staticmethod
def calculate_hash(answer, option_ids, rubric):
def calculate_hash(answer, options_selected, rubric):
"""
Calculate a hash for the contents of training example.
Args:
answer (JSON-serializable): The answer associated with the training example.
option_ids (iterable of int): Selected option IDs for the training example.
options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example.
Returns:
......@@ -92,10 +129,28 @@ class TrainingExample(models.Model):
"""
contents = json.dumps({
'answer': answer,
'option_ids': list(option_ids),
'options_selected': options_selected,
'rubric': rubric.id
})
return sha1(contents).hexdigest()
class Meta:
app_label = "assessment"
@classmethod
def cache_key(cls, answer, options_selected, rubric):
"""
Calculate a cache key based on the content hash.
Args:
answer (JSON-serializable): The answer associated with the training example.
options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example.
Returns:
tuple of `(cache_key, content_hash)`, both bytestrings
"""
content_hash = cls.calculate_hash(answer, options_selected, rubric)
cache_key = u"TrainingExample.model.v{version}.{content_hash}".format(
version=cls.CACHE_KEY_VERSION,
content_hash=content_hash
)
return cache_key, content_hash
"""
Serializers for the training assessment type.
"""
import json
from django.core.cache import cache
from django.db import transaction, IntegrityError
from openassessment.assessment.models import TrainingExample
from .base import rubric_from_dict, RubricSerializer
......@@ -53,11 +53,17 @@ def serialize_training_example(example):
dict
"""
return {
'answer': example.answer,
'options_selected': example.options_selected_dict,
'rubric': RubricSerializer.serialized_from_cache(example.rubric),
}
# Since training examples are immutable, we can safely cache them
cache_key = example.cache_key_serialized()
example_dict = cache.get(cache_key)
if example_dict is None:
example_dict = {
'answer': example.answer,
'options_selected': example.options_selected_dict,
'rubric': RubricSerializer.serialized_from_cache(example.rubric),
}
cache.set(cache_key, example_dict)
return example_dict
@transaction.commit_on_success
......@@ -144,24 +150,31 @@ def deserialize_training_examples(examples, rubric_dict):
# Parse each example
created_examples = []
for example_dict in examples:
is_valid, errors = validate_training_example_format(example_dict)
if not is_valid:
raise InvalidTrainingExample("; ".join(errors))
options_ids = rubric.options_ids(example_dict['options_selected'])
# Try to retrieve the example from the cache
cache_key, content_hash = TrainingExample.cache_key(example_dict['answer'], example_dict['options_selected'], rubric)
example = cache.get(cache_key)
# Calculate the content hash to look up the example
content_hash = TrainingExample.calculate_hash(example_dict['answer'], options_ids, rubric)
# If we couldn't retrieve the example from the cache, create it
if example is None:
# Validate the training example
is_valid, errors = validate_training_example_format(example_dict)
if not is_valid:
raise InvalidTrainingExample("; ".join(errors))
try:
example = TrainingExample.objects.get(content_hash=content_hash)
except TrainingExample.DoesNotExist:
# Get or create the training example
try:
example = TrainingExample.create_example(
example_dict['answer'], options_ids, rubric
)
except IntegrityError:
example = TrainingExample.objects.get(content_hash=content_hash)
except TrainingExample.DoesNotExist:
try:
example = TrainingExample.create_example(
example_dict['answer'], example_dict['options_selected'], rubric
)
except IntegrityError:
example = TrainingExample.objects.get(content_hash=content_hash)
# Add the example to the cache
cache.set(cache_key, example)
created_examples.append(example)
......
......@@ -44,8 +44,8 @@ class StudentTrainingAssessmentTest(CacheResetTest):
},
{
"order_num": 2,
"name": "єχ¢єℓℓєηт",
"explanation": "乇メc乇レレ乇刀イ フo乃!",
"name": u"єχ¢єℓℓєηт",
"explanation": u"乇メc乇レレ乇刀イ フo乃!",
"points": 2,
},
]
......@@ -97,10 +97,6 @@ class StudentTrainingAssessmentTest(CacheResetTest):
self.submission_uuid = submission['uuid']
def test_training_workflow(self):
# Start a workflow
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# Initially, we should be on the first step
self._assert_workflow_status(self.submission_uuid, 0, 2)
......@@ -141,12 +137,9 @@ class StudentTrainingAssessmentTest(CacheResetTest):
self._assert_workflow_status(self.submission_uuid, 2, 2)
def test_assess_without_update(self):
# Start a workflow
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# Assess the first training example the same way the instructor did
# but do NOT update the workflow
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
corrections = training_api.assess_training_example(
self.submission_uuid,
self.EXAMPLES[0]['options_selected'],
......@@ -157,6 +150,69 @@ class StudentTrainingAssessmentTest(CacheResetTest):
self.assertEqual(corrections, dict())
self._assert_workflow_status(self.submission_uuid, 0, 2)
def test_get_same_example(self):
# Retrieve a training example
retrieved = training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# If we retrieve an example without completing the current example,
# we should get the same one.
next_retrieved = training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
self.assertEqual(retrieved, next_retrieved)
def test_get_training_example_num_queries(self):
# Run through the training example once using a different submission
# Training examples and rubrics will be cached and shared for other
# students working on the same problem.
self._warm_cache(self.RUBRIC, self.EXAMPLES)
# First training example
# This will need to create the student training workflow and the first item
# NOTE: we *could* cache the rubric model to reduce the number of queries here,
# but we're selecting it by content hash, which is indexed and should be plenty fast.
with self.assertNumQueries(6):
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# Without assessing the first training example, try to retrieve a training example.
# This should return the same example as before, so we won't need to create
# any workflows or workflow items.
with self.assertNumQueries(3):
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# Assess the current training example
training_api.assess_training_example(self.submission_uuid, self.EXAMPLES[0]['options_selected'])
# Retrieve the next training example, which requires us to create
# a new workflow item (but not a new workflow).
with self.assertNumQueries(4):
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
def test_submitter_is_finished_num_queries(self):
# Complete the first training example
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.assess_training_example(self.submission_uuid, self.EXAMPLES[0]['options_selected'])
# Check whether we've completed the requirements
requirements = {'num_required': 2}
with self.assertNumQueries(2):
training_api.submitter_is_finished(self.submission_uuid, requirements)
def test_get_num_completed_num_queries(self):
# Complete the first training example
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.assess_training_example(self.submission_uuid, self.EXAMPLES[0]['options_selected'])
# Check the number completed
with self.assertNumQueries(2):
training_api.get_num_completed(self.submission_uuid)
def test_assess_training_example_num_queries(self):
# Populate the cache with training examples and rubrics
self._warm_cache(self.RUBRIC, self.EXAMPLES)
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
with self.assertNumQueries(4):
training_api.assess_training_example(self.submission_uuid, self.EXAMPLES[0]['options_selected'])
@ddt.file_data('data/validate_training_examples.json')
def test_validate_training_examples(self, data):
errors = training_api.validate_training_examples(
......@@ -167,17 +223,15 @@ class StudentTrainingAssessmentTest(CacheResetTest):
def test_is_finished_no_workflow(self):
# Without creating a workflow, we should not be finished
self.assertFalse(training_api.submitter_is_finished(self.submission_uuid, dict()))
requirements = {'num_required': 1}
self.assertFalse(training_api.submitter_is_finished(self.submission_uuid, requirements))
# But since we're not being assessed by others, the "assessment" should be finished.
self.assertTrue(training_api.assessment_is_finished(self.submission_uuid, dict()))
self.assertTrue(training_api.assessment_is_finished(self.submission_uuid, requirements))
def test_get_training_example_none_available(self):
# Start a workflow and assess all training examples
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
self._assert_workflow_status(self.submission_uuid, 0, 2)
for example in self.EXAMPLES:
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.assess_training_example(self.submission_uuid, example['options_selected'])
# Now we should be complete
......@@ -185,40 +239,13 @@ class StudentTrainingAssessmentTest(CacheResetTest):
# ... and if we try to get another example, we should get None
self.assertIs(
training_api.get_training_example(self.submission_uuid), None
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES),
None
)
def test_get_training_example_no_workflow(self):
# With no workflow defined, we should get an error
with self.assertRaises(StudentTrainingRequestError):
training_api.get_training_example(self.submission_uuid)
def test_create_training_workflow_already_started(self):
# Create a workflow for training
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
# Try to create a second workflow for the same submission,
# expecting an error.
with self.assertRaises(StudentTrainingRequestError):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
def test_create_training_workflow_no_examples(self):
# Try to create a training workflow with no examples
# and expect an error.
with self.assertRaises(StudentTrainingRequestError):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, [])
def test_create_training_workflow_no_submission(self):
# Try to create a training workflow with an invalid submission UUID
with self.assertRaises(StudentTrainingRequestError):
training_api.create_training_workflow("not a submission!", self.RUBRIC, self.EXAMPLES)
def test_assess_training_example_completed_workflow(self):
# Start a workflow and assess all training examples
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
self._assert_workflow_status(self.submission_uuid, 0, 2)
for example in self.EXAMPLES:
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.assess_training_example(self.submission_uuid, example['options_selected'])
# Try to assess again, and expect an error
......@@ -228,66 +255,62 @@ class StudentTrainingAssessmentTest(CacheResetTest):
)
def test_assess_training_example_no_workflow(self):
# With no workflow defined, we should get an error
# If we try to assess without first retrieving an example
# (which implicitly creates a workflow)
# then we should get a request error.
with self.assertRaises(StudentTrainingRequestError):
training_api.assess_training_example(
self.submission_uuid, self.EXAMPLES[0]['options_selected']
)
def test_get_workflow_status_no_workflow(self):
# With no workflow defined, we should get an error
# when we try to request the status.
with self.assertRaises(StudentTrainingRequestError):
training_api.get_workflow_status(self.submission_uuid)
def test_get_num_completed_no_workflow(self):
num_completed = training_api.get_num_completed(self.submission_uuid)
self.assertEqual(num_completed, 0)
def test_create_workflow_invalid_rubric(self):
def test_get_training_example_invalid_rubric(self):
# Rubric is missing a very important key!
invalid_rubric = copy.deepcopy(self.RUBRIC)
del invalid_rubric['criteria']
with self.assertRaises(StudentTrainingRequestError):
training_api.create_training_workflow(self.submission_uuid, invalid_rubric, self.EXAMPLES)
training_api.get_training_example(self.submission_uuid, invalid_rubric, self.EXAMPLES)
def test_create_workflow_invalid_examples(self):
# Training example is not a dictionary!
def test_get_training_example_no_submission(self):
with self.assertRaises(StudentTrainingRequestError):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, ["not a dict!"])
@patch.object(StudentTrainingWorkflow, 'create_workflow')
def test_create_workflow_database_error(self, mock_db):
mock_db.side_effect = DatabaseError("Kaboom!")
with self.assertRaises(StudentTrainingInternalError):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.get_training_example("no_such_submission", self.RUBRIC, self.EXAMPLES)
@patch.object(StudentTrainingWorkflow.objects, 'get')
def test_get_workflow_status_database_error(self, mock_db):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
def test_get_num_completed_database_error(self, mock_db):
mock_db.side_effect = DatabaseError("Kaboom!")
with self.assertRaises(StudentTrainingInternalError):
training_api.get_workflow_status(self.submission_uuid)
training_api.get_num_completed(self.submission_uuid)
@patch.object(StudentTrainingWorkflow.objects, 'get')
def test_get_training_example_database_error(self, mock_db):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
mock_db.side_effect = DatabaseError("Kaboom!")
with self.assertRaises(StudentTrainingInternalError):
training_api.get_training_example(self.submission_uuid)
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
@patch.object(StudentTrainingWorkflow.objects, 'get')
def test_assess_training_example_database_error(self, mock_db):
training_api.create_training_workflow(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
training_api.get_training_example(self.submission_uuid, self.RUBRIC, self.EXAMPLES)
mock_db.side_effect = DatabaseError("Kaboom!")
with self.assertRaises(StudentTrainingInternalError):
training_api.assess_training_example(self.submission_uuid, self.EXAMPLES[0]['options_selected'])
def _assert_workflow_status(self, submission_uuid, num_completed, num_total):
@ddt.data({}, {'num_required': 'not an integer!'})
def test_submitter_is_finished_invalid_requirements(self, requirements):
with self.assertRaises(StudentTrainingRequestError):
training_api.submitter_is_finished(self.submission_uuid, requirements)
def _assert_workflow_status(self, submission_uuid, num_completed, num_required):
"""
Check that the training workflow is on the expected step.
Args:
submission_uuid (str): Submission UUID of the student being trained.
num_completed (int): The expected number of examples assessed correctly.
num_total (int): The expected number of available examples.
num_total (int): The required number of examples to assess.
Returns:
None
......@@ -296,27 +319,22 @@ class StudentTrainingAssessmentTest(CacheResetTest):
AssertionError
"""
# Check the workflow status (what step are we on?)
status = training_api.get_workflow_status(submission_uuid)
self.assertEqual(status['num_completed'], num_completed)
self.assertEqual(status['num_total'], num_total)
# Check the number of steps we've completed
actual_num_completed = training_api.get_num_completed(submission_uuid)
self.assertEqual(actual_num_completed, num_completed)
# Check whether the assessment step is completed
# (used by the workflow API)
is_finished = bool(num_completed == num_total)
self.assertEqual(
training_api.submitter_is_finished(submission_uuid, dict()),
is_finished
)
requirements = {'num_required': num_required}
is_finished = training_api.submitter_is_finished(submission_uuid, requirements)
self.assertEqual(is_finished, bool(num_completed >= num_required))
# Assessment is finished should always be true,
# since we're not being assessed by others.
self.assertTrue(
training_api.assessment_is_finished(submission_uuid, dict()),
)
self.assertTrue(training_api.assessment_is_finished(submission_uuid, requirements))
# At no point should we receive a score!
self.assertIs(training_api.get_score(submission_uuid, dict()), None)
self.assertIs(training_api.get_score(submission_uuid, requirements), None)
def _expected_example(self, input_example, rubric):
"""
......@@ -352,6 +370,25 @@ class StudentTrainingAssessmentTest(CacheResetTest):
AssertionError
"""
example = training_api.get_training_example(submission_uuid)
example = training_api.get_training_example(submission_uuid, input_rubric, input_examples)
expected_example = self._expected_example(input_examples[order_num], input_rubric)
self.assertItemsEqual(example, expected_example)
def _warm_cache(self, rubric, examples):
"""
Create a submission and complete student training.
This will populate the cache with training examples and rubrics,
which are immutable and shared for all students training on a particular problem.
Args:
rubric (dict): Serialized rubric model.
examples (list of dict): Serialized training examples
Returns:
None
"""
pre_submission = sub_api.create_submission(self.STUDENT_ITEM, self.ANSWER)
for example in examples:
training_api.get_training_example(pre_submission['uuid'], rubric, examples)
training_api.assess_training_example(pre_submission['uuid'], example['options_selected'])
......@@ -3,7 +3,7 @@ Test-specific Django settings.
"""
# Inherit from base settings
from .base import *
from .base import * # pylint:disable=W0614,W0401
TEST_APPS = (
'openassessment',
......@@ -44,3 +44,10 @@ EDX_ORA2["EVENT_LOGGER"] = "openassessment.workflow.test.events.fake_event_logge
# We run Celery in "always eager" mode in the test suite,
# which executes tasks synchronously instead of using the task queue.
CELERY_ALWAYS_EAGER = True
# Silence cache key warnings
# https://docs.djangoproject.com/en/1.4/topics/cache/#cache-key-warnings
import warnings
from django.core.cache import CacheKeyWarning
warnings.simplefilter("ignore", CacheKeyWarning)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment