Commit 2b224a74 by Will Daly

Merge pull request #333 from edx/will/student-training-in-flight

Student training in-flight changes
parents 64b3df76 5295df1d
""" """
Django models specific to the student training assessment type. Django models specific to the student training assessment type.
""" """
from django.db import models, transaction from django.db import models
from django.utils import timezone from django.utils import timezone
from submissions import api as sub_api from submissions import api as sub_api
from .training import TrainingExample from .training import TrainingExample
...@@ -27,14 +27,12 @@ class StudentTrainingWorkflow(models.Model): ...@@ -27,14 +27,12 @@ class StudentTrainingWorkflow(models.Model):
app_label = "assessment" app_label = "assessment"
@classmethod @classmethod
@transaction.commit_on_success def get_or_create_workflow(cls, submission_uuid):
def create_workflow(cls, submission_uuid, examples):
""" """
Create a student training workflow. Create a student training workflow.
Args: Args:
submission_uuid (str): The UUID of the submission from the student being trained. submission_uuid (str): The UUID of the submission from the student being trained.
examples (list of TrainingExamples): The training examples to show the student.
Returns: Returns:
StudentTrainingWorkflow StudentTrainingWorkflow
...@@ -43,70 +41,105 @@ class StudentTrainingWorkflow(models.Model): ...@@ -43,70 +41,105 @@ class StudentTrainingWorkflow(models.Model):
SubmissionError: There was an error retrieving the submission. SubmissionError: There was an error retrieving the submission.
""" """
# Try to retrieve an existing workflow
# If we find one, return it immediately
try:
return cls.objects.get(submission_uuid=submission_uuid) # pylint:disable=E1101
except cls.DoesNotExist:
pass
# Retrieve the student item info # Retrieve the student item info
submission = sub_api.get_submission_and_student(submission_uuid) submission = sub_api.get_submission_and_student(submission_uuid)
student_item = submission['student_item'] student_item = submission['student_item']
# Create the workflow # Create the workflow
workflow = cls.objects.create( return cls.objects.create(
submission_uuid=submission_uuid, submission_uuid=submission_uuid,
student_id=student_item['student_id'], student_id=student_item['student_id'],
item_id=student_item['item_id'], item_id=student_item['item_id'],
course_id=student_item['course_id'] course_id=student_item['course_id']
) )
# Create workflow items for each example
for order_num, example in enumerate(examples):
StudentTrainingWorkflowItem.objects.create(
workflow=workflow,
order_num=order_num,
training_example=example,
)
return workflow
@property @property
def status(self): def num_completed(self):
""" """
The student's status within the workflow (num steps completed / num steps available). Return the number of training examples that the
student successfully assessed.
Returns: Returns:
tuple of `(num_completed, num_total)`, both integers int
""" """
items = self.items.all() # pylint:disable=E1101 return self.items.filter(completed_at__isnull=False).count() # pylint:disable=E1101
num_complete = sum([1 if item.is_complete else 0 for item in items])
num_total = len(items)
return num_complete, num_total
@property def next_training_example(self, examples):
def is_complete(self):
""" """
Check whether all items in the workflow are complete. Return the next training example for the student to assess.
If the student is already working on an example, return that.
Otherwise, choose an example the student hasn't seen
from the list of available examples.
Args:
examples (list of TrainingExample): Training examples to choose from.
Returns: Returns:
bool TrainingExample or None
""" """
num_incomplete = self.items.filter(completed_at__isnull=True).count() # pylint:disable=E1101 # Fetch all the items for this workflow from the database
return num_incomplete == 0 # Since Django's `select_related` does not follow reverse keys
# we perform the filter ourselves.
items = StudentTrainingWorkflowItem.objects.select_related(
'training_example'
).filter(workflow=self)
# If we're already working on an item, then return that item
incomplete_items = [item for item in items if not item.is_complete]
if len(incomplete_items) > 0:
return incomplete_items[0].training_example
# Otherwise, pick an item that we have not completed
# from the list of examples.
completed_examples = [
item.training_example for item in items
]
available_examples = [
available for available in examples
if available not in completed_examples
]
# If there are no more items available, return None
if len(available_examples) == 0:
return None
# Otherwise, create a new workflow item for the example
# and add it to the workflow
else:
order_num = len(items) + 1
next_example = available_examples[0]
StudentTrainingWorkflowItem.objects.create(
workflow=self,
order_num=order_num,
training_example=next_example
)
return next_example
@property @property
def next_incomplete_item(self): def current_item(self):
""" """
Find the next incomplete item in the workflow. Return the item the student is currently working on,
or None.
Returns: Returns:
StudentTrainingWorkflowItem or None StudentTrainingWorkflowItem or None
""" """
next_incomplete = self.items.filter( # pylint:disable=E1101 next_incomplete = self.items.select_related(
'training_example'
).filter( # pylint:disable=E1101
completed_at__isnull=True completed_at__isnull=True
).order_by('order_num')[:1] ).order_by('order_num')[:1]
if len(next_incomplete) > 0: return None if len(next_incomplete) == 0 else next_incomplete[0]
return next_incomplete[0]
else:
return None
class StudentTrainingWorkflowItem(models.Model): class StudentTrainingWorkflowItem(models.Model):
......
...@@ -3,6 +3,7 @@ Django models for training (both student and AI). ...@@ -3,6 +3,7 @@ Django models for training (both student and AI).
""" """
import json import json
from hashlib import sha1 from hashlib import sha1
from django.core.cache import cache
from django.db import models from django.db import models
from .base import Rubric, CriterionOption from .base import Rubric, CriterionOption
...@@ -22,29 +23,34 @@ class TrainingExample(models.Model): ...@@ -22,29 +23,34 @@ class TrainingExample(models.Model):
# SHA1 hash # SHA1 hash
content_hash = models.CharField(max_length=40, unique=True, db_index=True) content_hash = models.CharField(max_length=40, unique=True, db_index=True)
# Version for models serialized to the cache
# Increment this number whenever you update this model!
CACHE_KEY_VERSION = 1
class Meta: class Meta:
app_label = "assessment" app_label = "assessment"
@classmethod @classmethod
def create_example(cls, answer, options_ids, rubric): def create_example(cls, answer, options_selected, rubric):
""" """
Create a new training example. Create a new training example.
Args: Args:
answer (JSON-serializable): The answer associated with the training example. answer (JSON-serializable): The answer associated with the training example.
option_ids (iterable of int): Selected option IDs for the training example. options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example. rubric (Rubric): The rubric associated with the training example.
Returns: Returns:
TrainingExample TrainingExample
""" """
content_hash = cls.calculate_hash(answer, options_ids, rubric) content_hash = cls.calculate_hash(answer, options_selected, rubric)
example = TrainingExample.objects.create( example = TrainingExample.objects.create(
content_hash=content_hash, content_hash=content_hash,
raw_answer=json.dumps(answer), raw_answer=json.dumps(answer),
rubric=rubric rubric=rubric
) )
options_ids = rubric.options_ids(options_selected)
for option in CriterionOption.objects.filter(pk__in=list(options_ids)): for option in CriterionOption.objects.filter(pk__in=list(options_ids)):
example.options_selected.add(option) example.options_selected.add(option)
...@@ -71,19 +77,50 @@ class TrainingExample(models.Model): ...@@ -71,19 +77,50 @@ class TrainingExample(models.Model):
dict: maps criterion names to selected option names dict: maps criterion names to selected option names
""" """
return { # Since training examples are immutable, we can safely cache this
option.criterion.name: option.name cache_key = self.cache_key_serialized(attribute="options_selected_dict")
for option in self.options_selected.all() # pylint:disable=E1101 options_selected = cache.get(cache_key)
} if options_selected is None:
options_selected = {
option.criterion.name: option.name
for option in self.options_selected.all() # pylint:disable=E1101
}
cache.set(cache_key, options_selected)
return options_selected
def cache_key_serialized(self, attribute=None):
"""
Create a cache key based on the content hash
for serialized versions of this model.
Kwargs:
attribute: The name of the attribute being serialized.
If not specified, assume that we are serializing the entire model.
Returns:
str: The cache key
"""
if attribute is None:
key_template = u"TrainingExample.json.v{version}.{content_hash}"
else:
key_template = u"TrainingExample.{attribute}.json.v{version}.{content_hash}"
cache_key = key_template.format(
version=self.CACHE_KEY_VERSION,
content_hash=self.content_hash,
attribute=attribute
)
return cache_key
@staticmethod @staticmethod
def calculate_hash(answer, option_ids, rubric): def calculate_hash(answer, options_selected, rubric):
""" """
Calculate a hash for the contents of training example. Calculate a hash for the contents of training example.
Args: Args:
answer (JSON-serializable): The answer associated with the training example. answer (JSON-serializable): The answer associated with the training example.
option_ids (iterable of int): Selected option IDs for the training example. options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example. rubric (Rubric): The rubric associated with the training example.
Returns: Returns:
...@@ -92,10 +129,28 @@ class TrainingExample(models.Model): ...@@ -92,10 +129,28 @@ class TrainingExample(models.Model):
""" """
contents = json.dumps({ contents = json.dumps({
'answer': answer, 'answer': answer,
'option_ids': list(option_ids), 'options_selected': options_selected,
'rubric': rubric.id 'rubric': rubric.id
}) })
return sha1(contents).hexdigest() return sha1(contents).hexdigest()
class Meta: @classmethod
app_label = "assessment" def cache_key(cls, answer, options_selected, rubric):
"""
Calculate a cache key based on the content hash.
Args:
answer (JSON-serializable): The answer associated with the training example.
options_selected (dict): The options selected from the rubric (mapping of criterion names to option names)
rubric (Rubric): The rubric associated with the training example.
Returns:
tuple of `(cache_key, content_hash)`, both bytestrings
"""
content_hash = cls.calculate_hash(answer, options_selected, rubric)
cache_key = u"TrainingExample.model.v{version}.{content_hash}".format(
version=cls.CACHE_KEY_VERSION,
content_hash=content_hash
)
return cache_key, content_hash
""" """
Serializers for the training assessment type. Serializers for the training assessment type.
""" """
import json from django.core.cache import cache
from django.db import transaction, IntegrityError from django.db import transaction, IntegrityError
from openassessment.assessment.models import TrainingExample from openassessment.assessment.models import TrainingExample
from .base import rubric_from_dict, RubricSerializer from .base import rubric_from_dict, RubricSerializer
...@@ -53,11 +53,17 @@ def serialize_training_example(example): ...@@ -53,11 +53,17 @@ def serialize_training_example(example):
dict dict
""" """
return { # Since training examples are immutable, we can safely cache them
'answer': example.answer, cache_key = example.cache_key_serialized()
'options_selected': example.options_selected_dict, example_dict = cache.get(cache_key)
'rubric': RubricSerializer.serialized_from_cache(example.rubric), if example_dict is None:
} example_dict = {
'answer': example.answer,
'options_selected': example.options_selected_dict,
'rubric': RubricSerializer.serialized_from_cache(example.rubric),
}
cache.set(cache_key, example_dict)
return example_dict
@transaction.commit_on_success @transaction.commit_on_success
...@@ -144,24 +150,31 @@ def deserialize_training_examples(examples, rubric_dict): ...@@ -144,24 +150,31 @@ def deserialize_training_examples(examples, rubric_dict):
# Parse each example # Parse each example
created_examples = [] created_examples = []
for example_dict in examples: for example_dict in examples:
is_valid, errors = validate_training_example_format(example_dict)
if not is_valid:
raise InvalidTrainingExample("; ".join(errors))
options_ids = rubric.options_ids(example_dict['options_selected']) # Try to retrieve the example from the cache
cache_key, content_hash = TrainingExample.cache_key(example_dict['answer'], example_dict['options_selected'], rubric)
example = cache.get(cache_key)
# Calculate the content hash to look up the example # If we couldn't retrieve the example from the cache, create it
content_hash = TrainingExample.calculate_hash(example_dict['answer'], options_ids, rubric) if example is None:
# Validate the training example
is_valid, errors = validate_training_example_format(example_dict)
if not is_valid:
raise InvalidTrainingExample("; ".join(errors))
try: # Get or create the training example
example = TrainingExample.objects.get(content_hash=content_hash)
except TrainingExample.DoesNotExist:
try: try:
example = TrainingExample.create_example(
example_dict['answer'], options_ids, rubric
)
except IntegrityError:
example = TrainingExample.objects.get(content_hash=content_hash) example = TrainingExample.objects.get(content_hash=content_hash)
except TrainingExample.DoesNotExist:
try:
example = TrainingExample.create_example(
example_dict['answer'], example_dict['options_selected'], rubric
)
except IntegrityError:
example = TrainingExample.objects.get(content_hash=content_hash)
# Add the example to the cache
cache.set(cache_key, example)
created_examples.append(example) created_examples.append(example)
......
...@@ -3,7 +3,7 @@ Test-specific Django settings. ...@@ -3,7 +3,7 @@ Test-specific Django settings.
""" """
# Inherit from base settings # Inherit from base settings
from .base import * from .base import * # pylint:disable=W0614,W0401
TEST_APPS = ( TEST_APPS = (
'openassessment', 'openassessment',
...@@ -44,3 +44,10 @@ EDX_ORA2["EVENT_LOGGER"] = "openassessment.workflow.test.events.fake_event_logge ...@@ -44,3 +44,10 @@ EDX_ORA2["EVENT_LOGGER"] = "openassessment.workflow.test.events.fake_event_logge
# We run Celery in "always eager" mode in the test suite, # We run Celery in "always eager" mode in the test suite,
# which executes tasks synchronously instead of using the task queue. # which executes tasks synchronously instead of using the task queue.
CELERY_ALWAYS_EAGER = True CELERY_ALWAYS_EAGER = True
# Silence cache key warnings
# https://docs.djangoproject.com/en/1.4/topics/cache/#cache-key-warnings
import warnings
from django.core.cache import CacheKeyWarning
warnings.simplefilter("ignore", CacheKeyWarning)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment