Commit b912a222 by Peter Ljunglöf

Minor optimizations to align.py, and doctest fixes

parent 4722f1d5
...@@ -300,11 +300,16 @@ class IBMModel1(object): ...@@ -300,11 +300,16 @@ class IBMModel1(object):
- Stage 2: Generates updated word alignments for the sentence pairs, based - Stage 2: Generates updated word alignments for the sentence pairs, based
on the translation probabilities from Stage 1. on the translation probabilities from Stage 1.
.. doctest:: >>> corpus = [AlignedSent(['the', 'house'], ['das', 'Haus']),
... AlignedSent(['the', 'book'], ['das', 'Buch']),
>> from nltk.corpus import comtrans ... AlignedSent(['a', 'book'], ['ein', 'Buch'])]
>> from nltk.align import IBMModel1 >>> ibm1 = IBMModel1(corpus)
>> ibm1 = IBMModel1(comtrans.aligned_sents()) >>> print "%.1f" % ibm1.probabilities['book', 'Buch']
1.0
>>> print "%.1f" % ibm1.probabilities['book', 'das']
0.0
>>> print "%.1f" % ibm1.probabilities['book', None]
0.5
:param aligned_sents: The parallel text ``corpus.Iterable`` containing :param aligned_sents: The parallel text ``corpus.Iterable`` containing
AlignedSent instances of aligned sentence pairs from the corpus. AlignedSent instances of aligned sentence pairs from the corpus.
...@@ -326,9 +331,9 @@ class IBMModel1(object): ...@@ -326,9 +331,9 @@ class IBMModel1(object):
def _train(self): def _train(self):
""" """
Perform Expectation Maximization training to learn Perform Expectation Maximization training to learn
word-to-word translation probabilities, and return word-to-word translation probabilities.
the number of iterations that were required for convergence.
""" """
logging.debug("Starting training")
# Collect up sets of all English and foreign words # Collect up sets of all English and foreign words
english_words = set() english_words = set()
...@@ -338,15 +343,13 @@ class IBMModel1(object): ...@@ -338,15 +343,13 @@ class IBMModel1(object):
foreign_words.update(aligned_sent.mots) foreign_words.update(aligned_sent.mots)
# add the NULL token to the foreign word set. # add the NULL token to the foreign word set.
foreign_words.add(None) foreign_words.add(None)
num_probs = len(english_words)*len(foreign_words) num_probs = len(english_words) * len(foreign_words)
# Initialise t(e|f) uniformly # Initialise t(e|f) uniformly
t = defaultdict(lambda: float(1)/len(english_words)) default_prob = 1.0 / len(english_words)
s_total = defaultdict(float) t = defaultdict(lambda: default_prob)
for e in english_words:
for f in foreign_words:
z = t[e,f]
convergent_threshold = self.convergent_threshold
globally_converged = False globally_converged = False
iteration_count = 0 iteration_count = 0
while not globally_converged: while not globally_converged:
...@@ -356,6 +359,7 @@ class IBMModel1(object): ...@@ -356,6 +359,7 @@ class IBMModel1(object):
total = defaultdict(float) total = defaultdict(float)
for aligned_sent in self.aligned_sents: for aligned_sent in self.aligned_sents:
s_total = {}
# Compute normalization # Compute normalization
for e_w in aligned_sent.words: for e_w in aligned_sent.words:
s_total[e_w] = 0.0 s_total[e_w] = 0.0
...@@ -375,7 +379,7 @@ class IBMModel1(object): ...@@ -375,7 +379,7 @@ class IBMModel1(object):
for e_w in english_words: for e_w in english_words:
new_prob = count[e_w, f_w] / total[f_w] new_prob = count[e_w, f_w] / total[f_w]
delta = abs(t[e_w, f_w] - new_prob) delta = abs(t[e_w, f_w] - new_prob)
if delta < self.convergent_threshold: if delta < convergent_threshold:
num_converged += 1 num_converged += 1
t[e_w, f_w] = new_prob t[e_w, f_w] = new_prob
...@@ -383,8 +387,8 @@ class IBMModel1(object): ...@@ -383,8 +387,8 @@ class IBMModel1(object):
iteration_count += 1 iteration_count += 1
if num_converged == num_probs: if num_converged == num_probs:
globally_converged = True globally_converged = True
logging.debug("%d/%d (%.2f%%) converged"%( logging.debug("%d/%d (%.2f%%) converged" %
num_converged, num_probs, 100.0*num_converged/num_probs)) (num_converged, num_probs, 100.0*num_converged/num_probs))
self.probabilities = dict(t) self.probabilities = dict(t)
......
...@@ -53,13 +53,12 @@ the corresponding sentences: ...@@ -53,13 +53,12 @@ the corresponding sentences:
... ...
IndexError: Alignment is outside boundary of mots IndexError: Alignment is outside boundary of mots
.. in Python 2.6 version, we will support:
als.alignment = Alignment([(0, 0), (1, 4), (2, 1), (3, 3)])
You can set alignments with any sequence of tuples, so long as the first two You can set alignments with any sequence of tuples, so long as the first two
indexes of the tuple are the alignment indices: indexes of the tuple are the alignment indices:
als.alignment = Alignment([(0, 0), (1, 1), (2, 2, "boat"), (3, 3, False, (1,2))])
>>> Alignment([(0, 0), (1, 1), (2, 2, "boat"), (3, 3, False, (1,2))]) >>> Alignment([(0, 0), (1, 1), (2, 2, "boat"), (3, 3, False, (1,2))])
Alignment([(0, 0), (1, 1), (2, 2, 'boat'), (3, 3, False, (1, 2))]) Alignment([(0, 0), (1, 1), (2, 2, 'boat'), (3, 3, False, (1, 2))])
...@@ -72,36 +71,46 @@ EM for IBM Model 1 ...@@ -72,36 +71,46 @@ EM for IBM Model 1
Here is an example from Kohn, 2010: Here is an example from Kohn, 2010:
>>> from nltk.align import IBMModel1 # doctest +SKIP >>> from nltk.align import IBMModel1
>>> corpus = [AlignedSent(['the', 'house'], ['das', 'Haus']), >>> corpus = [AlignedSent(['the', 'house'], ['das', 'Haus']),
... AlignedSent(['the', 'book'], ['das', 'Buch']), ... AlignedSent(['the', 'book'], ['das', 'Buch']),
... AlignedSent(['a', 'book'], ['ein', 'Buch'])] # doctest +SKIP ... AlignedSent(['a', 'book'], ['ein', 'Buch'])]
>>> em_ibm1 = IBMModel1(corpus, 1e-3) # doctest +SKIP >>> em_ibm1 = IBMModel1(corpus, 1e-3)
>>> print round(em_ibm1.probabilities['the', 'das'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['the', 'das'], 1)
1.0 1.0
>>> print round(em_ibm1.probabilities['book', 'das'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['book', 'das'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['house', 'das'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['house', 'das'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['the', 'Buch'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['the', 'Buch'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['book', 'Buch'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['book', 'Buch'], 1)
1.0 1.0
>>> print round(em_ibm1.probabilities['a', 'Buch'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['a', 'Buch'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['book', 'ein'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['book', 'ein'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['a', 'ein'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['a', 'ein'], 1)
1.0 1.0
>>> print round(em_ibm1.probabilities['the', 'Haus'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['the', 'Haus'], 1)
0.0 0.0
>>> print round(em_ibm1.probabilities['house', 'Haus'], 1) # doctest +SKIP >>> print round(em_ibm1.probabilities['house', 'Haus'], 1)
1.0 1.0
>>> print round(em_ibm1.probabilities['book', None], 1)
0.5
And using an NLTK corpus. We train on only 10 sentences, since it is so incredibly slow:
>>> from nltk.corpus import comtrans
>>> com_ibm1 = IBMModel1(comtrans.aligned_sents() [:10])
>>> print round(com_ibm1.probabilities['bitte', 'Please'], 1)
0.2
>>> print round(com_ibm1.probabilities['Sitzungsperiode', 'session'], 1)
1.0
Get the alignments: Get the alignments:
>>> em_ibm1.aligned() # doctest: +SKIP >>> em_ibm1.aligned() # doctest: +NORMALIZE_WHITESPACE
[AlignedSent(['the', 'house'], ['das', 'Haus'], [AlignedSent(['the', 'house'], ['das', 'Haus'],
Alignment([(0, 0), (1, 1)])), Alignment([(0, 0), (1, 1)])),
AlignedSent(['the', 'book'], ['das', 'Buch'], AlignedSent(['the', 'book'], ['das', 'Buch'],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment