Commit aa2c2cc8 by Steven Bird

Introduce end-of-line normalization

parent bdbee1a1
* text=auto
######################################################################## ########################################################################
# DRT-Glue Semantics Formulas Using DRT and Event Representation # DRT-Glue Semantics Formulas Using DRT and Event Representation
# #
# Entries are made up of three parts, separated by colons (":") # Entries are made up of three parts, separated by colons (":")
# #
# 1) The semtype name. # 1) The semtype name.
# - May appear multiple times with different relationship sets (3) # - May appear multiple times with different relationship sets (3)
# - May "extend" other semtypes: "type(parent)" # - May "extend" other semtypes: "type(parent)"
# #
# 2) The glue formulas. # 2) The glue formulas.
# - A comma-separated list of tuples representing glue formulas # - A comma-separated list of tuples representing glue formulas
# - If the entry is an extension, then the listed formulas will be added to # - If the entry is an extension, then the listed formulas will be added to
# the list from the super type # the list from the super type
# #
# 3) The relationship set (OPTIONAL) # 3) The relationship set (OPTIONAL)
# - If not specified, then assume the entry covers ALL relationship sets # - If not specified, then assume the entry covers ALL relationship sets
# - If the entry is an extension, then the relationship set dictates which # - If the entry is an extension, then the relationship set dictates which
# particular entry should be extended. If no relationship set is # particular entry should be extended. If no relationship set is
# specified, then every entry of the parent type is extended. # specified, then every entry of the parent type is extended.
# #
######################################################################## ########################################################################
#Quantifiers #Quantifiers
def_art : (\P Q.([x],[((([y],[])+Q(y)) <-> (x = y)), P(x)]), ((v -o r) -o ((f -o Var) -o Var))) def_art : (\P Q.([x],[((([y],[])+Q(y)) <-> (x = y)), P(x)]), ((v -o r) -o ((f -o Var) -o Var)))
ex_quant : (\P Q.(([x],[])+P(x)+Q(x)), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) ex_quant : (\P Q.(([x],[])+P(x)+Q(x)), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
univ_quant : (\P Q.([],[((([x],[])+P(x)) -> Q(x))]), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) univ_quant : (\P Q.([],[((([x],[])+P(x)) -> Q(x))]), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
no_quant : (\P Q.(-(([x],[])+P(x)+Q(x))), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) no_quant : (\P Q.(-(([x],[])+P(x)+Q(x))), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
#Nouns #Nouns
NN : (\Q.(([x],[<word>(x)])+Q(x)), ((f -o Var) -o Var)) : [] # treat a noun missing its spec as implicitly existentially quantified NN : (\Q.(([x],[<word>(x)])+Q(x)), ((f -o Var) -o Var)) : [] # treat a noun missing its spec as implicitly existentially quantified
NN : (\x.([],[<word>(x)]), (v -o r)) : [spec] NN : (\x.([],[<word>(x)]), (v -o r)) : [spec]
NN : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) : [] # treat a noun missing its spec as implicitly existentially quantified NN : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) : [] # treat a noun missing its spec as implicitly existentially quantified
NNP : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) NNP : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r))
NNS(NN) NNS(NN)
PRP : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[PRO(x)]), (v -o r)) PRP : (\P Q.(([x],[]) + P(x) + Q(x)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[PRO(x)]), (v -o r))
#Verbs #Verbs
VB : (\x.([],[<word>(x)]), (subj -o f)) : [subj] #iv VB : (\x.([],[<word>(x)]), (subj -o f)) : [subj] #iv
VB : (\x y.([],[<word>(x,y)]), (subj -o (obj -o f))) : [subj, obj] #tv VB : (\x y.([],[<word>(x,y)]), (subj -o (obj -o f))) : [subj, obj] #tv
VB : (\y.exists x.([],[<word>(x,y)]), (obj -o f)) : [obj] #incomplete tv VB : (\y.exists x.([],[<word>(x,y)]), (obj -o f)) : [obj] #incomplete tv
VB : (\x y z.([],[<word>(x,y,z)]), (subj -o (obj -o (theme -o f)))) : [subj, obj, theme] #dtv VB : (\x y z.([],[<word>(x,y,z)]), (subj -o (obj -o (theme -o f)))) : [subj, obj, theme] #dtv
VB : (\y z.exists x.([],[<word>(x,y,z)]), obj -o (theme -o f)) : [obj, theme] #incomplete dtv VB : (\y z.exists x.([],[<word>(x,y,z)]), obj -o (theme -o f)) : [obj, theme] #incomplete dtv
VB : (\x z.exists y.([],[<word>(x,y,z)]), subj -o (theme -o f)) : [subj, theme] #incomplete dtv VB : (\x z.exists y.([],[<word>(x,y,z)]), subj -o (theme -o f)) : [subj, theme] #incomplete dtv
VB : (\z.exists x y.([],[<word>(x,y,z)]), theme -o f) : [theme] #incomplete dtv VB : (\z.exists x y.([],[<word>(x,y,z)]), theme -o f) : [theme] #incomplete dtv
VB : (\x y.([],[<word>(x,y)]), (subj -o (comp -o f))) : [subj, comp] #tv_comp VB : (\x y.([],[<word>(x,y)]), (subj -o (comp -o f))) : [subj, comp] #tv_comp
VB : (\x P.([],[<word>(x,P)]), (subj -o ((xcomp.subj -o xcomp) -o f))) : [subj, xcomp] #equi VB : (\x P.([],[<word>(x,P)]), (subj -o ((xcomp.subj -o xcomp) -o f))) : [subj, xcomp] #equi
VB : (\x y P.([],[<word>(x,y,P)]), (subj -o (obj -o ((xcomp.subj -o xcomp) -o f)))) : [subj, obj, xcomp] # object equi VB : (\x y P.([],[<word>(x,y,P)]), (subj -o (obj -o ((xcomp.subj -o xcomp) -o f)))) : [subj, obj, xcomp] # object equi
VB : (\P.([],[<word>(P)]), (xcomp -o f)) : [xcomp] #raising VB : (\P.([],[<word>(P)]), (xcomp -o f)) : [xcomp] #raising
VBD(VB) : (\P.PAST(P), (f -o f)) VBD(VB) : (\P.PAST(P), (f -o f))
VBZ(VB) VBZ(VB)
#Modifiers #Modifiers
nmod : (\x.([],[<word>(x)]), f), (\P Q x.(P(x)+Q(x)), (f -o ((super.v -o super.r) -o (super.v -o super.r)))) nmod : (\x.([],[<word>(x)]), f), (\P Q x.(P(x)+Q(x)), (f -o ((super.v -o super.r) -o (super.v -o super.r))))
JJ(nmod) JJ(nmod)
vmod : (\x.([],[<word>(x)]), f), (\P Q x.P(Q(x)), (f -o (super -o super))) vmod : (\x.([],[<word>(x)]), f), (\P Q x.P(Q(x)), (f -o (super -o super)))
RB(vmod) RB(vmod)
tense : (\P.([],[<word>(P)]), (super.f -o super.f)) tense : (\P.([],[<word>(P)]), (super.f -o super.f))
#Conjunctions #Conjunctions
cc_clause : (\P Q.(P + Q), (a -o (b -o f))) cc_clause : (\P Q.(P + Q), (a -o (b -o f)))
######################################################################## ########################################################################
# DRT-Glue Semantics Formulas Using DRT and Event Representation # DRT-Glue Semantics Formulas Using DRT and Event Representation
# #
# Entries are made up of three parts, separated by colons (":") # Entries are made up of three parts, separated by colons (":")
# #
# 1) The semtype name. # 1) The semtype name.
# - May appear multiple times with different relationship sets (3) # - May appear multiple times with different relationship sets (3)
# - May "extend" other semtypes: "type(parent)" # - May "extend" other semtypes: "type(parent)"
# #
# 2) The glue formulas. # 2) The glue formulas.
# - A comma-separated list of tuples representing glue formulas # - A comma-separated list of tuples representing glue formulas
# - If the entry is an extension, then the listed formulas will be added to # - If the entry is an extension, then the listed formulas will be added to
# the list from the super type # the list from the super type
# #
# 3) The relationship set (OPTIONAL) # 3) The relationship set (OPTIONAL)
# - If not specified, then assume the entry covers ALL relationship sets # - If not specified, then assume the entry covers ALL relationship sets
# - If the entry is an extension, then the relationship set dictates which # - If the entry is an extension, then the relationship set dictates which
# particular entry should be extended. If no relationship set is # particular entry should be extended. If no relationship set is
# specified, then every entry of the parent type is extended. # specified, then every entry of the parent type is extended.
# #
######################################################################## ########################################################################
#Quantifiers #Quantifiers
def_art : (\P Q.([x],[((([y],[])+Q(y)) <-> (x = y)), P(x)]), ((v -o r) -o ((f -o Var) -o Var))) def_art : (\P Q.([x],[((([y],[])+Q(y)) <-> (x = y)), P(x)]), ((v -o r) -o ((f -o Var) -o Var)))
ex_quant : (\P Q.(([x],[])+P(x)+Q(x)), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) ex_quant : (\P Q.(([x],[])+P(x)+Q(x)), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
univ_quant : (\P Q.([],[((([x],[])+P(x)) -> Q(x))]), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) univ_quant : (\P Q.([],[((([x],[])+P(x)) -> Q(x))]), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
no_quant : (\P Q.(-(([x],[])+P(x)+Q(x))), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var))) no_quant : (\P Q.(-(([x],[])+P(x)+Q(x))), ((super.v -o super.r) -o ((super.f -o super.var) -o super.var)))
#Nouns #Nouns
NN : (\x.([],[<word>(x)]), (v -o r)) : [spec] NN : (\x.([],[<word>(x)]), (v -o r)) : [spec]
NN : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) : [] # treat a noun missing its spec as implicitly existentially quantified NN : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) : [] # treat a noun missing its spec as implicitly existentially quantified
NNP : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r)) NNP : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[<word>(x)]), (v -o r))
NNS(NN) NNS(NN)
PRP : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[PRO(x)]), (v -o r)) PRP : (\P Q e.(([x],[]) + P(x) + Q(x,e)), ((v -o r) -o ((f -o var) -o var))), (\x.([],[PRO(x)]), (v -o r))
#Verbs #Verbs
VB : (\x e.([],[<word>(e),subj(e,x)]), (subj -o f)) [subj] #iv VB : (\x e.([],[<word>(e),subj(e,x)]), (subj -o f)) [subj] #iv
VB : (\x y e.([],[<word>(e), subj(e,x), obj(e,y)]), (subj -o (obj -o f))) : [subj, obj] #tv VB : (\x y e.([],[<word>(e), subj(e,x), obj(e,y)]), (subj -o (obj -o f))) : [subj, obj] #tv
VB : (\x y z e.([],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), (subj -o (obj -o (theme -o f)))) : [subj, obj, theme] #dtv VB : (\x y z e.([],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), (subj -o (obj -o (theme -o f)))) : [subj, obj, theme] #dtv
VB : (\y z e.([x],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), obj -o (theme -o f)) : [obj, theme] #incomplete dtv VB : (\y z e.([x],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), obj -o (theme -o f)) : [obj, theme] #incomplete dtv
VB : (\x z e.([y],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), subj -o (theme -o f)) : [subj, theme] #incomplete dtv VB : (\x z e.([y],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), subj -o (theme -o f)) : [subj, theme] #incomplete dtv
VB : (\z e.([x,y],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), theme -o f) : [theme] #incomplete dtv VB : (\z e.([x,y],[<word>(e), subj(e,x), obj(e,y), theme(e,z)]), theme -o f) : [theme] #incomplete dtv
VB : (\x y e.(([],[<word>(e), subj(e,x), comp(e,y)])+P(e)), (subj -o (comp -o f))) : [subj, comp] #tv_comp VB : (\x y e.(([],[<word>(e), subj(e,x), comp(e,y)])+P(e)), (subj -o (comp -o f))) : [subj, comp] #tv_comp
VB : (\x P e.([],[<word>(e), subj(e,x), xcomp(e,P)]), (subj -o ((xcomp.subj -o xcomp) -o f))) : [subj, xcomp] #equi VB : (\x P e.([],[<word>(e), subj(e,x), xcomp(e,P)]), (subj -o ((xcomp.subj -o xcomp) -o f))) : [subj, xcomp] #equi
VB : (\x y P e.([],[<word>(e), subj(e,x), obj(e,y), (xcomp e P)]), (subj -o (obj -o ((xcomp.subj -o xcomp) -o f)))) : [subj, obj, xcomp] # object equi VB : (\x y P e.([],[<word>(e), subj(e,x), obj(e,y), (xcomp e P)]), (subj -o (obj -o ((xcomp.subj -o xcomp) -o f)))) : [subj, obj, xcomp] # object equi
VB : (\P e.([],[<word>(e), xcomp(e,P)]), (xcomp -o f)) : [xcomp] #raising VB : (\P e.([],[<word>(e), xcomp(e,P)]), (xcomp -o f)) : [xcomp] #raising
VBD(VB) : (\P.PAST(P), (f -o f)) VBD(VB) : (\P.PAST(P), (f -o f))
VBZ(VB) VBZ(VB)
#Modifiers #Modifiers
nmod : (\x.([],[<word>(x)]), f), (\P Q x.(P(x)+Q(x)), (f -o ((super.v -o super.r) -o (super.v -o super.r)))) : [] nmod : (\x.([],[<word>(x)]), f), (\P Q x.(P(x)+Q(x)), (f -o ((super.v -o super.r) -o (super.v -o super.r)))) : []
JJ(nmod) : [] JJ(nmod) : []
vmod : (\x.([],[<word>(x)]), f), (\P Q x.P(Q(x)), (f -o (super -o super))) : [] vmod : (\x.([],[<word>(x)]), f), (\P Q x.P(Q(x)), (f -o (super -o super))) : []
RB(vmod) : [] RB(vmod) : []
tense(vmod) : [] tense(vmod) : []
#Prepositions #Prepositions
IN : (\P Q e1.P(\x e2.(([],[<word>(e2,x)]) + Q(e2)),e1), ((subj -o subj.var) -o subj.var) -o (super -o super)) : [subj] IN : (\P Q e1.P(\x e2.(([],[<word>(e2,x)]) + Q(e2)),e1), ((subj -o subj.var) -o subj.var) -o (super -o super)) : [subj]
IN(vmod) : [] IN(vmod) : []
#Conjunctions #Conjunctions
cc_clause : (\P Q.(P + Q), (a -o (b -o f))) cc_clause : (\P Q.(P + Q), (a -o (b -o f)))
1 John _ NNP _ _ 2 SUBJ _ _ 1 John _ NNP _ _ 2 SUBJ _ _
2 runs _ VB _ _ 0 ROOT _ _ 2 runs _ VB _ _ 0 ROOT _ _
1 a _ DT _ _ 2 SPEC _ _ 1 a _ DT _ _ 2 SPEC _ _
2 man _ NN _ _ 3 SUBJ _ _ 2 man _ NN _ _ 3 SUBJ _ _
3 runs _ VB _ _ 0 ROOT _ _ 3 runs _ VB _ _ 0 ROOT _ _
1 John _ NNP _ _ 2 SUBJ _ _ 1 John _ NNP _ _ 2 SUBJ _ _
2 sees _ VB _ _ 0 ROOT _ _ 2 sees _ VB _ _ 0 ROOT _ _
3 Mary _ NNP _ _ 2 OBJ _ _ 3 Mary _ NNP _ _ 2 OBJ _ _
1 every _ DT _ _ 2 SPEC _ _ 1 every _ DT _ _ 2 SPEC _ _
2 girl _ NN _ _ 3 SUBJ _ _ 2 girl _ NN _ _ 3 SUBJ _ _
3 chases _ VB _ _ 0 ROOT _ _ 3 chases _ VB _ _ 0 ROOT _ _
4 an _ DT _ _ 5 SPEC _ _ 4 an _ DT _ _ 5 SPEC _ _
5 animal _ NN _ _ 3 OBJ _ _ 5 animal _ NN _ _ 3 OBJ _ _
1 Bill _ NNP _ _ 2 SUBJ _ _ 1 Bill _ NNP _ _ 2 SUBJ _ _
2 sees _ VB _ _ 0 ROOT _ _ 2 sees _ VB _ _ 0 ROOT _ _
3 a _ DT _ _ 4 SPEC _ _ 3 a _ DT _ _ 4 SPEC _ _
4 dog _ NN _ _ 2 OBJ _ _ 4 dog _ NN _ _ 2 OBJ _ _
1 every _ DT _ _ 2 SPEC _ _ 1 every _ DT _ _ 2 SPEC _ _
2 girl _ NN _ _ 3 SUBJ _ _ 2 girl _ NN _ _ 3 SUBJ _ _
3 chases _ VB _ _ 0 ROOT _ _ 3 chases _ VB _ _ 0 ROOT _ _
4 John _ NNP _ _ 3 OBJ _ _ 4 John _ NNP _ _ 3 OBJ _ _
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment