Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
N
nltk
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
nltk
Commits
2d4d9050
Commit
2d4d9050
authored
Nov 10, 2011
by
Steven Bird
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fixed doctests
parent
aada675c
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
18 deletions
+25
-18
nltk/tag/brill.py
+25
-18
No files found.
nltk/tag/brill.py
View file @
2d4d9050
...
@@ -16,7 +16,11 @@ improves the tagging by applying a list of transformation rules.
...
@@ -16,7 +16,11 @@ improves the tagging by applying a list of transformation rules.
These transformation rules are automatically learned from the training
These transformation rules are automatically learned from the training
corpus, based on one or more "rule templates."
corpus, based on one or more "rule templates."
>>> from nltk.tag.brill import *
>>> from nltk.corpus import brown
>>> from nltk.tag import UnigramTagger
>>> brown_train = list(brown.tagged_sents(categories='news')[:500])
>>> brown_test = list(brown.tagged_sents(categories='news')[500:600])
>>> unigram_tagger = UnigramTagger(brown_train)
>>> templates = [
>>> templates = [
... SymmetricProximateTokensTemplate(ProximateTagsRule, (1,1)),
... SymmetricProximateTokensTemplate(ProximateTagsRule, (1,1)),
... SymmetricProximateTokensTemplate(ProximateTagsRule, (2,2)),
... SymmetricProximateTokensTemplate(ProximateTagsRule, (2,2)),
...
@@ -29,13 +33,13 @@ corpus, based on one or more "rule templates."
...
@@ -29,13 +33,13 @@ corpus, based on one or more "rule templates."
... ProximateTokensTemplate(ProximateTagsRule, (-1, -1), (1,1)),
... ProximateTokensTemplate(ProximateTagsRule, (-1, -1), (1,1)),
... ProximateTokensTemplate(ProximateWordsRule, (-1, -1), (1,1)),
... ProximateTokensTemplate(ProximateWordsRule, (-1, -1), (1,1)),
... ]
... ]
>>> trainer = FastBrillTaggerTrainer(initial_tagger=unigram_tagger
_2
,
>>> trainer = FastBrillTaggerTrainer(initial_tagger=unigram_tagger,
... templates=templates, trace=3,
... templates=templates, trace=3,
... deterministic=True)
... deterministic=True)
>>> brill_tagger = trainer.train(brown_train, max_rules=10)
# doctest: +NORMALIZE_WHITESPACE
>>> brill_tagger = trainer.train(brown_train, max_rules=10)
Training Brill tagger on
4523
sentences...
Training Brill tagger on
500
sentences...
Finding initial useful rules...
Finding initial useful rules...
Found
75359
useful rules.
Found
10210
useful rules.
<BLANKLINE>
<BLANKLINE>
B |
B |
S F r O | Score = Fixed - Broken
S F r O | Score = Fixed - Broken
...
@@ -44,20 +48,23 @@ corpus, based on one or more "rule templates."
...
@@ -44,20 +48,23 @@ corpus, based on one or more "rule templates."
r e e e | l Other = num tags changed incorrect -> incorrect
r e e e | l Other = num tags changed incorrect -> incorrect
e d n r | e
e d n r | e
------------------+-------------------------------------------------------
------------------+-------------------------------------------------------
354 354 0 3
| TO -> IN if the tag of the following word is 'AT'
46 46 0 0
| TO -> IN if the tag of the following word is 'AT'
111 173 62 3 | NN -> VB if the tag of the preceding word is 'TO
'
18 20 2 0 | TO -> IN if the tag of words i+1...i+3 is 'CD
'
110 110 0 4 | TO -> IN if the tag of the following word is 'NP'
14 14 0 0 | IN -> IN-TL if the tag of the preceding word is
83 157 74 4 | NP -> NP-TL if
the tag of the following word is
| 'NN-TL', and
the tag of the following word is
| 'NN-TL'
| 'NN-TL'
73 77 4 0 | VBD -> VBN if the tag of words i-2...i-1 is 'BEDZ'
11 11 0 1 | TO -> IN if the tag of the following word is 'NNS'
71 116 45 3 | TO -> IN if the tag of words i+1...i+2 is 'NNS'
10 10 0 0 | TO -> IN if the tag of the following word is 'JJ'
65 65 0 3 | NN -> VB if the tag of the preceding word is 'MD'
8 8 0 0 | , -> ,-HL if the tag of the preceding word is 'NP-
63 63 0 0 | VBD -> VBN if the tag of words i-3...i-1 is 'HVZ'
| HL'
59 62 3 2 | CS -> QL if the text of words i+1...i+3 is 'as'
7 7 0 1 | NN -> VB if the tag of the preceding word is 'MD'
55 57 2 0 | VBD -> VBN if the tag of words i-3...i-1 is 'HVD'
7 13 6 0 | NN -> VB if the tag of the preceding word is 'TO'
>>> print 'Accuracy:
%4.1
f
%%
'
%
(
7 7 0 0 | NP-TL -> NP if the tag of words i+1...i+2 is 'NNS'
... 100.0 * brill_tagger.evaluate(brown_test))
7 7 0 0 | VBN -> VBD if the tag of the preceding word is
Accuracy: 89.5
%
| 'NP'
>>> brill_tagger.evaluate(brown_test) # doctest: +ELLIPSIS
0.742...
"""
"""
import
bisect
# for binary search through a subset of indices
import
bisect
# for binary search through a subset of indices
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment