Commit cf5e827c by Vik Paruchuri

Add in test case creation, ability to run those test cases

parent d8662d92
......@@ -11,4 +11,6 @@ ease.egg-info/
*.egg
.coverage
*.orig
!.vc
data/json_data/*
......@@ -18,11 +18,28 @@ import model_creator
import util_functions
import predictor_set
import predictor_extractor
from datetime import datetime
import json
#Make a log
log = logging.getLogger(__name__)
def create(text,score,prompt_string):
def dump_input_data(text, score):
try:
file_path = base_path + "/tests/data/json_data/"
time_suffix = datetime.now().strftime("%H%M%S%d%m%Y")
prefix = "test-case-"
filename = prefix + time_suffix + ".json"
json_data = []
for i in xrange(0, len(text)):
json_data.append({'text' : text[i], 'score' : score[i]})
with open(file_path + filename, 'w+') as outfile:
json.dump(json_data, outfile)
except:
error = "Could not dump data to file."
log.exception(error)
def create(text,score,prompt_string, dump_data=False):
"""
Creates a machine learning model from input text, associated scores, a prompt, and a path to the model
TODO: Remove model path argument, it is needed for now to support legacy code
......@@ -31,6 +48,9 @@ def create(text,score,prompt_string):
prompt_string - the common prompt for the set of essays
"""
if dump_data:
dump_input_data(text, score)
algorithm = select_algorithm(score)
#Initialize a results dictionary to return
results = {'errors': [],'success' : False, 'cv_kappa' : 0, 'cv_mean_absolute_error': 0,
......
......@@ -25,7 +25,6 @@ import math
log = logging.getLogger(__name__)
def grade(grader_data,submission):
"""
Grades a specified submission using specified models
......
__author__ = 'vik'
......@@ -3,6 +3,7 @@ import os
from ease import create, grade
import random
import logging
import json
log = logging.getLogger(__name__)
......@@ -22,6 +23,11 @@ class DataLoader():
text.append(data[:CHARACTER_LIMIT])
return text
def load_json_file(self, filename):
datafile = open(os.path.join(filename))
data = json.load(datafile)
return data
def load_data(self):
"""
Override when inheriting
......@@ -50,6 +56,47 @@ class PolarityLoader(DataLoader):
return scores, text
class JSONLoader(DataLoader):
def __init__(self, pathname):
self.pathname = pathname
def load_data(self):
filenames = os.listdir(self.pathname)
files = [os.path.abspath(os.path.join(self.pathname,f)) for f in filenames if os.path.isfile(os.path.join(self.pathname,f)) if f.endswith(".json")]
files.sort()
#We need to have both a postive and a negative folder to classify
if len(files) == 0:
return [], []
data = []
for f in files:
f_data = self.load_json_file(f)
data.append(f_data)
all_scores = []
all_text = []
for i in xrange(0,len(data)):
scores = [d['score'] for d in data[i]]
text = [d['text'] for d in data[i]]
if isinstance(scores[0], list):
new_text = []
new_scores = []
for i in xrange(0,len(scores)):
text = scores[i]
s = scores[i]
for j in s:
new_text.append(text)
new_scores.append(j)
text = new_text
scores = new_scores
all_scores.append(scores)
all_text.append(text)
return all_scores, all_text
class ModelCreator():
def __init__(self, scores, text):
self.scores = scores
......@@ -83,10 +130,13 @@ class GenericTest(object):
expected_kappa_min = 0
expected_mae_max = 0
def generic_setup(self):
def load_data(self):
data_loader = self.loader(os.path.join(TEST_PATH, self.data_path))
scores, text = data_loader.load_data()
return scores, text
def generic_setup(self, scores, text):
#Shuffle to mix up the classes, set seed to make it repeatable
random.seed(1)
shuffled_scores = []
......@@ -100,28 +150,30 @@ class GenericTest(object):
self.text = shuffled_text[:TRAINING_LIMIT]
self.scores = shuffled_scores[:TRAINING_LIMIT]
def test_model_creation_and_grading(self):
def model_creation_and_grading(self):
score_subset = self.scores[:QUICK_TEST_LIMIT]
text_subset = self.text[:QUICK_TEST_LIMIT]
model_creator = ModelCreator(score_subset, text_subset)
results = model_creator.create_model()
self.assertTrue(results['success'])
assert results['success'] == True
grader = Grader(results)
results = grader.grade(self.text[0])
self.assertTrue(results['success'])
assert results['success']==True
def test_scoring_accuracy(self):
def scoring_accuracy(self):
random.seed(1)
model_creator = ModelCreator(self.scores, self.text)
results = model_creator.create_model()
self.assertTrue(results['success'])
assert results['success']==True
cv_kappa = results['cv_kappa']
cv_mae = results['cv_mean_absolute_error']
self.assertGreaterEqual(cv_kappa, self.expected_kappa_min)
self.assertLessEqual(cv_mae, self.expected_mae_max)
assert cv_kappa>=self.expected_kappa_min
assert cv_mae <=self.expected_mae_max
def test_generic_model_creation_and_grading(self):
def generic_model_creation_and_grading(self):
log.info(self.scores)
log.info(self.text)
score_subset = [random.randint(0,100) for i in xrange(0,min([QUICK_TEST_LIMIT, len(self.scores)]))]
text_subset = self.text[:QUICK_TEST_LIMIT]
text_subset = {
......@@ -130,7 +182,7 @@ class GenericTest(object):
}
model_creator = ModelCreator(score_subset, text_subset)
results = model_creator.create_model()
self.assertTrue(results['success'])
assert results['success']==True
grader = Grader(results)
test_text = {
......@@ -138,7 +190,7 @@ class GenericTest(object):
'numeric_values' : [1]
}
results = grader.grade(test_text)
self.assertTrue(results['success'])
assert results['success']==True
class PolarityTest(unittest.TestCase,GenericTest):
loader = PolarityLoader
......@@ -150,6 +202,37 @@ class PolarityTest(unittest.TestCase,GenericTest):
expected_mae_max = 1
def setUp(self):
self.generic_setup()
scores, text = self.load_data()
self.generic_setup(scores, text)
def test_model_creation_and_grading(self):
self.model_creation_and_grading()
def test_scoring_accuracy(self):
self.scoring_accuracy()
def test_generic_model_creation_and_grading(self):
self.generic_model_creation_and_grading()
class JSONTest(GenericTest):
loader = JSONLoader
data_path = "data/json_data"
#These will increase if we allow more data in.
#I am setting the amount of data low to allow tests to finish quickly (40 training essays, 1000 character max for each)
expected_kappa_min = -.2
expected_mae_max = 1
def setUp(self):
self.scores, self.text = self.load_data()
return self.scores, self.text
def test_loop():
json_test = JSONTest()
scores, text = json_test.setUp()
for i in xrange(0,len(scores)):
json_test.generic_setup(scores[i], text[i])
yield json_test.model_creation_and_grading
yield json_test.scoring_accuracy
yield json_test.generic_model_creation_and_grading
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment