Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
ease
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
ease
Commits
56fab8d8
Commit
56fab8d8
authored
Feb 12, 2013
by
Vik Paruchuri
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix rounding
parent
80a39f7c
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
3 deletions
+11
-3
tests/test_cv_full.py
+11
-3
No files found.
tests/test_cv_full.py
View file @
56fab8d8
...
...
@@ -40,7 +40,8 @@ for filename in filenames:
texts
=
[]
lines
=
sa_val
.
readlines
()
eset
=
essay_set
.
EssaySet
(
type
=
"train"
)
for
i
in
xrange
(
1
,
len
(
lines
)):
#len(lines)
for
i
in
xrange
(
1
,
10
):
id_val
,
essay_set_num
,
score1
,
score2
,
text
=
lines
[
i
]
.
split
(
"
\t
"
)
score1s
.
append
(
int
(
score1
))
score2s
.
append
(
int
(
score2
))
...
...
@@ -53,16 +54,23 @@ for filename in filenames:
extractor
=
feature_extractor
.
FeatureExtractor
()
extractor
.
initialize_dictionaries
(
eset
)
train_feats
=
extractor
.
gen_feats
(
eset
)
clf
=
GradientBoostingClassifier
(
n_estimators
=
100
,
learn_rate
=.
05
,
max_depth
=
4
,
random_state
=
1
,
min_samples_leaf
=
3
)
print
(
max
(
score1s
))
if
max
(
score1s
)
<=
3
:
clf
=
GradientBoostingClassifier
(
n_estimators
=
100
,
learn_rate
=.
05
,
max_depth
=
4
,
random_state
=
1
,
min_samples_leaf
=
3
)
else
:
clf
=
GradientBoostingRegressor
(
n_estimators
=
100
,
learn_rate
=.
05
,
max_depth
=
4
,
random_state
=
1
,
min_samples_leaf
=
3
)
try
:
cv_preds
=
util_functions
.
gen_cv_preds
(
clf
,
train_feats
,
score1s
,
num_chunks
=
3
)
# int(math.floor(len(texts)/2)
except
:
cv_preds
=
score1s
rounded_cv
=
[
int
(
round
(
cv
))
for
cv
in
list
(
cv_preds
)]
err
=
numpy
.
mean
(
numpy
.
abs
(
numpy
.
array
(
cv_preds
)
-
score1s
))
errs
.
append
(
err
)
print
err
kappa
=
util_functions
.
quadratic_weighted_kappa
(
list
(
cv_preds
),
score1s
)
kappa
=
util_functions
.
quadratic_weighted_kappa
(
rounded_cv
,
score1s
)
kappas
.
append
(
kappa
)
print
kappa
percent_error
=
numpy
.
mean
(
numpy
.
abs
(
score1s
-
numpy
.
array
(
cv_preds
))
/
score1s
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment