Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
ease
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
ease
Commits
1fb02a6d
Commit
1fb02a6d
authored
Feb 12, 2013
by
Vik Paruchuri
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Parallel ml cv training
parent
119a6390
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
18 additions
and
26 deletions
+18
-26
tests/test_cv_full.py
+18
-26
No files found.
tests/test_cv_full.py
View file @
1fb02a6d
...
@@ -12,6 +12,7 @@ import essay_set
...
@@ -12,6 +12,7 @@ import essay_set
import
feature_extractor
import
feature_extractor
import
numpy
import
numpy
import
math
import
math
from
multiprocessing
import
Pool
from
sklearn.ensemble
import
GradientBoostingClassifier
,
GradientBoostingRegressor
from
sklearn.ensemble
import
GradientBoostingClassifier
,
GradientBoostingRegressor
...
@@ -22,14 +23,9 @@ data_path = "/home/vik/mitx_all/vik_sandbox/hewlett_essay_data/split_data"
...
@@ -22,14 +23,9 @@ data_path = "/home/vik/mitx_all/vik_sandbox/hewlett_essay_data/split_data"
if
not
data_path
.
endswith
(
"/"
):
if
not
data_path
.
endswith
(
"/"
):
data_path
=
data_path
+
"/"
data_path
=
data_path
+
"/"
filenames
=
[
str
(
i
)
+
".tsv"
for
i
in
xrange
(
1
,
19
)]
filenames
=
[
str
(
i
)
+
".tsv"
for
i
in
xrange
(
1
,
19
)]
kappas
=
[]
errs
=
[]
def
run_single_worker
(
args
):
percent_errors
=
[]
filename
,
data_path
=
args
human_kappas
=
[]
human_errs
=
[]
human_percent_errors
=
[]
for
filename
in
filenames
:
base_name
=
data_path
+
filename
base_name
=
data_path
+
filename
print
base_name
print
base_name
sa_val
=
file
(
base_name
)
sa_val
=
file
(
base_name
)
...
@@ -40,7 +36,8 @@ for filename in filenames:
...
@@ -40,7 +36,8 @@ for filename in filenames:
texts
=
[]
texts
=
[]
lines
=
sa_val
.
readlines
()
lines
=
sa_val
.
readlines
()
eset
=
essay_set
.
EssaySet
(
type
=
"train"
)
eset
=
essay_set
.
EssaySet
(
type
=
"train"
)
for
i
in
xrange
(
1
,
len
(
lines
)):
#len(lines)
for
i
in
xrange
(
1
,
10
):
id_val
,
essay_set_num
,
score1
,
score2
,
text
=
lines
[
i
]
.
split
(
"
\t
"
)
id_val
,
essay_set_num
,
score1
,
score2
,
text
=
lines
[
i
]
.
split
(
"
\t
"
)
score1s
.
append
(
int
(
score1
))
score1s
.
append
(
int
(
score1
))
score2s
.
append
(
int
(
score2
))
score2s
.
append
(
int
(
score2
))
...
@@ -65,26 +62,13 @@ for filename in filenames:
...
@@ -65,26 +62,13 @@ for filename in filenames:
cv_preds
=
score1s
cv_preds
=
score1s
rounded_cv
=
[
int
(
round
(
cv
))
for
cv
in
list
(
cv_preds
)]
rounded_cv
=
[
int
(
round
(
cv
))
for
cv
in
list
(
cv_preds
)]
added_score1
=
[
s1
+
1
for
s1
in
score1s
]
err
=
numpy
.
mean
(
numpy
.
abs
(
numpy
.
array
(
cv_preds
)
-
score1s
))
err
=
numpy
.
mean
(
numpy
.
abs
(
numpy
.
array
(
cv_preds
)
-
score1s
))
errs
.
append
(
err
)
print
err
kappa
=
util_functions
.
quadratic_weighted_kappa
(
rounded_cv
,
score1s
)
kappa
=
util_functions
.
quadratic_weighted_kappa
(
rounded_cv
,
score1s
)
kappas
.
append
(
kappa
)
percent_error
=
numpy
.
mean
(
numpy
.
abs
(
score1s
-
numpy
.
array
(
cv_preds
))
/
added_score1
)
print
kappa
percent_error
=
numpy
.
mean
(
numpy
.
abs
(
score1s
-
numpy
.
array
(
cv_preds
))
/
score1s
)
percent_errors
.
append
(
percent_error
)
print
percent_error
human_err
=
numpy
.
mean
(
numpy
.
abs
(
numpy
.
array
(
score2s
)
-
score1s
))
human_err
=
numpy
.
mean
(
numpy
.
abs
(
numpy
.
array
(
score2s
)
-
score1s
))
human_errs
.
append
(
human_err
)
print
human_err
human_kappa
=
util_functions
.
quadratic_weighted_kappa
(
list
(
score2s
),
score1s
)
human_kappa
=
util_functions
.
quadratic_weighted_kappa
(
list
(
score2s
),
score1s
)
human_kappas
.
append
(
human_kappa
)
human_percent_error
=
numpy
.
mean
(
numpy
.
abs
(
score1s
-
numpy
.
array
(
score2s
))
/
added_score1
)
print
human_kappa
human_percent_error
=
numpy
.
mean
(
numpy
.
abs
(
score1s
-
numpy
.
array
(
score2s
))
/
score1s
)
human_percent_errors
.
append
(
human_percent_error
)
print
human_percent_error
outfile
=
open
(
data_path
+
"outdata/"
+
filename
,
'w+'
)
outfile
=
open
(
data_path
+
"outdata/"
+
filename
,
'w+'
)
outfile
.
write
(
"cv_pred"
+
"
\t
"
+
"actual1
\t
"
+
"actual2
\n
"
)
outfile
.
write
(
"cv_pred"
+
"
\t
"
+
"actual1
\t
"
+
"actual2
\n
"
)
...
@@ -92,9 +76,16 @@ for filename in filenames:
...
@@ -92,9 +76,16 @@ for filename in filenames:
outfile
.
write
(
"{0}
\t
{1}
\t
{2}
\n
"
.
format
(
str
(
cv_preds
[
i
]),
str
(
score1s
[
i
]),
str
(
score2s
[
i
])))
outfile
.
write
(
"{0}
\t
{1}
\t
{2}
\n
"
.
format
(
str
(
cv_preds
[
i
]),
str
(
score1s
[
i
]),
str
(
score2s
[
i
])))
outfile
.
close
()
outfile
.
close
()
return
err
,
kappa
,
percent_error
,
human_err
,
human_kappa
,
human_percent_error
length
=
len
(
filenames
)
np
=
12
p
=
Pool
(
processes
=
np
)
errs
,
kappas
,
percent_errors
,
human_errs
,
human_kappas
,
human_percent_errors
=
zip
(
*
p
.
map
(
run_single_worker
,[(
filenames
[
i
],
data_path
)
for
i
in
xrange
(
0
,
length
)]))
outfile
=
open
(
data_path
+
"outdata/summary.tsv"
,
'w+'
)
outfile
=
open
(
data_path
+
"outdata/summary.tsv"
,
'w+'
)
outfile
.
write
(
"set
\t
err
\t
kappa
\t
percent_error
\t
human_err
\t
human_kappa
\t
human_percent_error
\n
"
)
outfile
.
write
(
"set
\t
err
\t
kappa
\t
percent_error
\t
human_err
\t
human_kappa
\t
human_percent_error
\n
"
)
for
i
in
xrange
(
0
,
len
(
cv_pred
s
)):
for
i
in
xrange
(
0
,
len
(
err
s
)):
outfile
.
write
(
"{set}
\t
{err}
\t
{kappa}
\t
{percent_error}
\t
{human_err}
\t
{human_kappa}
\t
{human_percent_error}
\n
"
.
format
(
outfile
.
write
(
"{set}
\t
{err}
\t
{kappa}
\t
{percent_error}
\t
{human_err}
\t
{human_kappa}
\t
{human_percent_error}
\n
"
.
format
(
set
=
i
+
1
,
err
=
errs
[
i
],
kappa
=
kappas
[
i
],
percent_error
=
percent_errors
[
i
],
human_err
=
human_errs
[
i
],
set
=
i
+
1
,
err
=
errs
[
i
],
kappa
=
kappas
[
i
],
percent_error
=
percent_errors
[
i
],
human_err
=
human_errs
[
i
],
human_kappa
=
human_kappas
[
i
],
human_percent_error
=
human_percent_errors
[
i
]))
human_kappa
=
human_kappas
[
i
],
human_percent_error
=
human_percent_errors
[
i
]))
...
@@ -104,3 +95,4 @@ outfile.close()
...
@@ -104,3 +95,4 @@ outfile.close()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment