""" NOTE: Anytime a `key` is passed into a function here, we assume it's a raw byte string. It should *not* be a string representation of a hex value. In other words, passing the `str` value of `"32fe72aaf2abb44de9e161131b5435c8d37cbdb6f5df242ae860b283115f2dae"` is bad. You want to pass in the result of calling .decode('hex') on that, so this instead: "'2\xfer\xaa\xf2\xab\xb4M\xe9\xe1a\x13\x1bT5\xc8\xd3|\xbd\xb6\xf5\xdf$*\xe8`\xb2\x83\x11_-\xae'" An RSA public key can be in any of the following formats: * X.509 subjectPublicKeyInfo DER SEQUENCE (binary or PEM encoding) * PKCS#1 RSAPublicKey DER SEQUENCE (binary or PEM encoding) * OpenSSH (textual public key only) An RSA private key can be in any of the following formats: * PKCS#1 RSAPrivateKey DER SEQUENCE (binary or PEM encoding) * PKCS#8 PrivateKeyInfo DER SEQUENCE (binary or PEM encoding) """ from __future__ import division import base64 import binascii import hmac import logging import os from hashlib import md5, sha256 from six import text_type from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric.padding import MGF1, OAEP from cryptography.hazmat.primitives.ciphers import Cipher from cryptography.hazmat.primitives.ciphers.algorithms import AES from cryptography.hazmat.primitives.ciphers.modes import CBC from cryptography.hazmat.primitives.hashes import SHA1 from cryptography.hazmat.primitives.padding import PKCS7 log = logging.getLogger(__name__) AES_BLOCK_SIZE_BYTES = int(AES.block_size / 8) def encrypt_and_encode(data, key): """ Encrypts and encodes `data` using `key' """ return base64.urlsafe_b64encode(aes_encrypt(data, key)) def decode_and_decrypt(encoded_data, key): """ Decrypts and decodes `data` using `key' """ return aes_decrypt(base64.urlsafe_b64decode(encoded_data), key) def aes_encrypt(data, key): """ Return a version of the `data` that has been encrypted to """ cipher = aes_cipher_from_key(key) padded_data = pad(data) encryptor = cipher.encryptor() return encryptor.update(padded_data) + encryptor.finalize() def aes_decrypt(encrypted_data, key): """ Decrypt `encrypted_data` using `key` """ cipher = aes_cipher_from_key(key) decryptor = cipher.decryptor() padded_data = decryptor.update(encrypted_data) + decryptor.finalize() return unpad(padded_data) def aes_cipher_from_key(key): """ Given an AES key, return a Cipher object that has `encryptor()` and `decryptor()` methods. It will create the cipher to use CBC mode, and create the initialization vector as Software Secure expects it. """ return Cipher(AES(key), CBC(generate_aes_iv(key)), backend=default_backend()) def generate_aes_iv(key): """ Return the initialization vector Software Secure expects for a given AES key (they hash it a couple of times and take a substring). """ return md5(key + md5(key).hexdigest()).hexdigest()[:AES_BLOCK_SIZE_BYTES] def random_aes_key(): return os.urandom(32) def pad(data): """ Pad the given `data` such that it fits into the proper AES block size """ padder = PKCS7(AES.block_size).padder() return padder.update(data) + padder.finalize() def unpad(padded_data): """ remove all padding from `padded_data` """ unpadder = PKCS7(AES.block_size).unpadder() return unpadder.update(padded_data) + unpadder.finalize() def rsa_encrypt(data, rsa_pub_key_bytes): """ `rsa_pub_key_bytes` is a byte sequence with the public key """ if isinstance(data, text_type): data = data.encode('utf-8') if isinstance(rsa_pub_key_bytes, text_type): rsa_pub_key_bytes = rsa_pub_key_bytes.encode('utf-8') if rsa_pub_key_bytes.startswith(b'-----'): key = serialization.load_pem_public_key(rsa_pub_key_bytes, backend=default_backend()) elif rsa_pub_key_bytes.startswith(b'ssh-rsa '): key = serialization.load_ssh_public_key(rsa_pub_key_bytes, backend=default_backend()) else: key = serialization.load_der_public_key(rsa_pub_key_bytes, backend=default_backend()) return key.encrypt(data, OAEP(MGF1(SHA1()), SHA1(), label=None)) def rsa_decrypt(data, rsa_priv_key_bytes): """ When given some `data` and an RSA private key, decrypt the data """ if isinstance(data, text_type): data = data.encode('utf-8') if isinstance(rsa_priv_key_bytes, text_type): rsa_priv_key_bytes = rsa_priv_key_bytes.encode('utf-8') if rsa_priv_key_bytes.startswith(b'-----'): key = serialization.load_pem_private_key(rsa_priv_key_bytes, password=None, backend=default_backend()) else: key = serialization.load_der_private_key(rsa_priv_key_bytes, password=None, backend=default_backend()) return key.decrypt(data, OAEP(MGF1(SHA1()), SHA1(), label=None)) def has_valid_signature(method, headers_dict, body_dict, access_key, secret_key): """ Given a message (either request or response), say whether it has a valid signature or not. """ _, expected_signature, _ = generate_signed_message( method, headers_dict, body_dict, access_key, secret_key ) authorization = headers_dict["Authorization"] auth_token, post_signature = authorization.split(":") _, post_access_key = auth_token.split() if post_access_key != access_key: log.error("Posted access key does not match ours") log.debug("Their access: %s; Our access: %s", post_access_key, access_key) return False if post_signature != expected_signature: log.error("Posted signature does not match expected") log.debug("Their sig: %s; Expected: %s", post_signature, expected_signature) return False return True def generate_signed_message(method, headers_dict, body_dict, access_key, secret_key): """ Returns a (message, signature) pair. """ message = signing_format_message(method, headers_dict, body_dict) # hmac needs a byte string for it's starting key, can't be unicode. hashed = hmac.new(secret_key.encode('utf-8'), message, sha256) signature = binascii.b2a_base64(hashed.digest()).rstrip('\n') authorization_header = "SSI {}:{}".format(access_key, signature) message += '\n' return message, signature, authorization_header def signing_format_message(method, headers_dict, body_dict): """ Given a dictionary of headers and a dictionary of the JSON for the body, will return a str that represents the normalized version of this messsage that will be used to generate a signature. """ headers_str = "{}\n\n{}".format(method, header_string(headers_dict)) body_str = body_string(body_dict) message = headers_str + body_str return message def header_string(headers_dict): """Given a dictionary of headers, return a canonical string representation.""" header_list = [] if 'Content-Type' in headers_dict: header_list.append(headers_dict['Content-Type'] + "\n") if 'Date' in headers_dict: header_list.append(headers_dict['Date'] + "\n") if 'Content-MD5' in headers_dict: header_list.append(headers_dict['Content-MD5'] + "\n") return "".join(header_list) # Note that trailing \n's are important def body_string(body_dict, prefix=""): """ Return a canonical string representation of the body of a JSON request or response. This canonical representation will be used as an input to the hashing used to generate a signature. """ body_list = [] for key, value in sorted(body_dict.items()): if isinstance(value, (list, tuple)): for i, arr in enumerate(value): if isinstance(arr, dict): body_list.append(body_string(arr, u"{}.{}.".format(key, i))) else: body_list.append(u"{}.{}:{}\n".format(key, i, arr).encode('utf-8')) elif isinstance(value, dict): body_list.append(body_string(value, key + ":")) else: if value is None: value = "null" body_list.append(u"{}{}:{}\n".format(prefix, key, value).encode('utf-8')) return "".join(body_list) # Note that trailing \n's are important