""" Unit tests for calc.py """ import unittest import numpy import calc from pyparsing import ParseException class EvaluatorTest(unittest.TestCase): """ Run tests for calc.evaluator Go through all functionalities as specifically as possible-- work from number input to functions and complex expressions Also test custom variable substitutions (i.e. `evaluator({'x':3.0},{}, '3*x')` gives 9.0) and more. """ def test_number_input(self): """ Test different kinds of float inputs See also test_trailing_period (slightly different) test_exponential_answer test_si_suffix """ easy_eval = lambda x: calc.evaluator({}, {}, x) self.assertEqual(easy_eval("13"), 13) self.assertEqual(easy_eval("3.14"), 3.14) self.assertEqual(easy_eval(".618033989"), 0.618033989) self.assertEqual(easy_eval("-13"), -13) self.assertEqual(easy_eval("-3.14"), -3.14) self.assertEqual(easy_eval("-.618033989"), -0.618033989) def test_period(self): """ The string '.' should not evaluate to anything. """ self.assertRaises(ParseException, calc.evaluator, {}, {}, '.') self.assertRaises(ParseException, calc.evaluator, {}, {}, '1+.') def test_trailing_period(self): """ Test that things like '4.' will be 4 and not throw an error """ try: self.assertEqual(4.0, calc.evaluator({}, {}, '4.')) except ParseException: self.fail("'4.' is a valid input, but threw an exception") def test_exponential_answer(self): """ Test for correct interpretation of scientific notation """ answer = 50 correct_responses = ["50", "50.0", "5e1", "5e+1", "50e0", "50.0e0", "500e-1"] incorrect_responses = ["", "3.9", "4.1", "0", "5.01e1"] for input_str in correct_responses: result = calc.evaluator({}, {}, input_str) fail_msg = "Expected '{0}' to equal {1}".format( input_str, answer) self.assertEqual(answer, result, msg=fail_msg) for input_str in incorrect_responses: result = calc.evaluator({}, {}, input_str) fail_msg = "Expected '{0}' to not equal {1}".format( input_str, answer) self.assertNotEqual(answer, result, msg=fail_msg) def test_si_suffix(self): """ Test calc.py's unique functionality of interpreting si 'suffixes'. For instance 'k' stand for 'kilo-' so '1k' should be 1,000 """ test_mapping = [('4.2%', 0.042), ('2.25k', 2250), ('8.3M', 8300000), ('9.9G', 9.9e9), ('1.2T', 1.2e12), ('7.4c', 0.074), ('5.4m', 0.0054), ('8.7u', 0.0000087), ('5.6n', 5.6e-9), ('4.2p', 4.2e-12)] for (expr, answer) in test_mapping: tolerance = answer * 1e-6 # Make rel. tolerance, because of floats fail_msg = "Failure in testing suffix '{0}': '{1}' was not {2}" fail_msg = fail_msg.format(expr[-1], expr, answer) self.assertAlmostEqual(calc.evaluator({}, {}, expr), answer, delta=tolerance, msg=fail_msg) def test_operator_sanity(self): """ Test for simple things like '5+2' and '5/2' """ var1 = 5.0 var2 = 2.0 operators = [('+', 7), ('-', 3), ('*', 10), ('/', 2.5), ('^', 25)] for (operator, answer) in operators: input_str = "{0} {1} {2}".format(var1, operator, var2) result = calc.evaluator({}, {}, input_str) fail_msg = "Failed on operator '{0}': '{1}' was not {2}".format( operator, input_str, answer) self.assertEqual(answer, result, msg=fail_msg) def test_raises_zero_division_err(self): """ Ensure division by zero gives an error """ self.assertRaises(ZeroDivisionError, calc.evaluator, {}, {}, '1/0') self.assertRaises(ZeroDivisionError, calc.evaluator, {}, {}, '1/0.0') self.assertRaises(ZeroDivisionError, calc.evaluator, {'x': 0.0}, {}, '1/x') def test_parallel_resistors(self): """ Test the parallel resistor operator || The formula is given by a || b || c ... = 1 / (1/a + 1/b + 1/c + ...) It is the resistance of a parallel circuit of resistors with resistance a, b, c, etc&. See if this evaulates correctly. """ self.assertEqual(calc.evaluator({}, {}, '1||1'), 0.5) self.assertEqual(calc.evaluator({}, {}, '1||1||2'), 0.4) self.assertEqual(calc.evaluator({}, {}, "j||1"), 0.5 + 0.5j) def test_parallel_resistors_with_zero(self): """ Check the behavior of the || operator with 0 """ self.assertTrue(numpy.isnan(calc.evaluator({}, {}, '0||1'))) self.assertTrue(numpy.isnan(calc.evaluator({}, {}, '0.0||1'))) self.assertTrue(numpy.isnan(calc.evaluator({'x': 0.0}, {}, 'x||1'))) def assert_function_values(self, fname, ins, outs, tolerance=1e-3): """ Helper function to test many values at once Test the accuracy of evaluator's use of the function given by fname Specifically, the equality of `fname(ins[i])` against outs[i]. This is used later to test a whole bunch of f(x) = y at a time """ for (arg, val) in zip(ins, outs): input_str = "{0}({1})".format(fname, arg) result = calc.evaluator({}, {}, input_str) fail_msg = "Failed on function {0}: '{1}' was not {2}".format( fname, input_str, val) self.assertAlmostEqual(val, result, delta=tolerance, msg=fail_msg) def test_trig_functions(self): """ Test the trig functions provided in calc.py which are: sin, cos, tan, arccos, arcsin, arctan """ angles = ['-pi/4', '0', 'pi/6', 'pi/5', '5*pi/4', '9*pi/4', '1 + j'] sin_values = [-0.707, 0, 0.5, 0.588, -0.707, 0.707, 1.298 + 0.635j] cos_values = [0.707, 1, 0.866, 0.809, -0.707, 0.707, 0.834 - 0.989j] tan_values = [-1, 0, 0.577, 0.727, 1, 1, 0.272 + 1.084j] # Cannot test tan(pi/2) b/c pi/2 is a float and not precise... self.assert_function_values('sin', angles, sin_values) self.assert_function_values('cos', angles, cos_values) self.assert_function_values('tan', angles, tan_values) # Include those where the real part is between -pi/2 and pi/2 arcsin_inputs = ['-0.707', '0', '0.5', '0.588', '1.298 + 0.635*j'] arcsin_angles = [-0.785, 0, 0.524, 0.629, 1 + 1j] self.assert_function_values('arcsin', arcsin_inputs, arcsin_angles) # Rather than throwing an exception, numpy.arcsin gives nan # self.assertTrue(numpy.isnan(calc.evaluator({}, {}, 'arcsin(-1.1)'))) # self.assertTrue(numpy.isnan(calc.evaluator({}, {}, 'arcsin(1.1)'))) # Disabled for now because they are giving a runtime warning... :-/ # Include those where the real part is between 0 and pi arccos_inputs = ['1', '0.866', '0.809', '0.834-0.989*j'] arccos_angles = [0, 0.524, 0.628, 1 + 1j] self.assert_function_values('arccos', arccos_inputs, arccos_angles) # self.assertTrue(numpy.isnan(calc.evaluator({}, {}, 'arccos(-1.1)'))) # self.assertTrue(numpy.isnan(calc.evaluator({}, {}, 'arccos(1.1)'))) # Has the same range as arcsin arctan_inputs = ['-1', '0', '0.577', '0.727', '0.272 + 1.084*j'] arctan_angles = arcsin_angles self.assert_function_values('arctan', arctan_inputs, arctan_angles) def test_reciprocal_trig_functions(self): """ Test the reciprocal trig functions provided in calc.py which are: sec, csc, cot, arcsec, arccsc, arccot """ angles = ['-pi/4', 'pi/6', 'pi/5', '5*pi/4', '9*pi/4', '1 + j'] sec_values = [1.414, 1.155, 1.236, -1.414, 1.414, 0.498 + 0.591j] csc_values = [-1.414, 2, 1.701, -1.414, 1.414, 0.622 - 0.304j] cot_values = [-1, 1.732, 1.376, 1, 1, 0.218 - 0.868j] self.assert_function_values('sec', angles, sec_values) self.assert_function_values('csc', angles, csc_values) self.assert_function_values('cot', angles, cot_values) arcsec_inputs = ['1.1547', '1.2361', '2', '-2', '-1.4142', '0.4983+0.5911*j'] arcsec_angles = [0.524, 0.628, 1.047, 2.094, 2.356, 1 + 1j] self.assert_function_values('arcsec', arcsec_inputs, arcsec_angles) arccsc_inputs = ['-1.1547', '-1.4142', '2', '1.7013', '1.1547', '0.6215-0.3039*j'] arccsc_angles = [-1.047, -0.785, 0.524, 0.628, 1.047, 1 + 1j] self.assert_function_values('arccsc', arccsc_inputs, arccsc_angles) # Has the same range as arccsc arccot_inputs = ['-0.5774', '-1', '1.7321', '1.3764', '0.5774', '(0.2176-0.868*j)'] arccot_angles = arccsc_angles self.assert_function_values('arccot', arccot_inputs, arccot_angles) def test_hyperbolic_functions(self): """ Test the hyperbolic functions which are: sinh, cosh, tanh, sech, csch, coth """ inputs = ['0', '0.5', '1', '2', '1+j'] neg_inputs = ['0', '-0.5', '-1', '-2', '-1-j'] negate = lambda x: [-k for k in x] # sinh is odd sinh_vals = [0, 0.521, 1.175, 3.627, 0.635 + 1.298j] self.assert_function_values('sinh', inputs, sinh_vals) self.assert_function_values('sinh', neg_inputs, negate(sinh_vals)) # cosh is even - do not negate cosh_vals = [1, 1.128, 1.543, 3.762, 0.834 + 0.989j] self.assert_function_values('cosh', inputs, cosh_vals) self.assert_function_values('cosh', neg_inputs, cosh_vals) # tanh is odd tanh_vals = [0, 0.462, 0.762, 0.964, 1.084 + 0.272j] self.assert_function_values('tanh', inputs, tanh_vals) self.assert_function_values('tanh', neg_inputs, negate(tanh_vals)) # sech is even - do not negate sech_vals = [1, 0.887, 0.648, 0.266, 0.498 - 0.591j] self.assert_function_values('sech', inputs, sech_vals) self.assert_function_values('sech', neg_inputs, sech_vals) # the following functions do not have 0 in their domain inputs = inputs[1:] neg_inputs = neg_inputs[1:] # csch is odd csch_vals = [1.919, 0.851, 0.276, 0.304 - 0.622j] self.assert_function_values('csch', inputs, csch_vals) self.assert_function_values('csch', neg_inputs, negate(csch_vals)) # coth is odd coth_vals = [2.164, 1.313, 1.037, 0.868 - 0.218j] self.assert_function_values('coth', inputs, coth_vals) self.assert_function_values('coth', neg_inputs, negate(coth_vals)) def test_hyperbolic_inverses(self): """ Test the inverse hyperbolic functions which are of the form arc[X]h """ results = [0, 0.5, 1, 2, 1 + 1j] sinh_vals = ['0', '0.5211', '1.1752', '3.6269', '0.635+1.2985*j'] self.assert_function_values('arcsinh', sinh_vals, results) cosh_vals = ['1', '1.1276', '1.5431', '3.7622', '0.8337+0.9889*j'] self.assert_function_values('arccosh', cosh_vals, results) tanh_vals = ['0', '0.4621', '0.7616', '0.964', '1.0839+0.2718*j'] self.assert_function_values('arctanh', tanh_vals, results) sech_vals = ['1.0', '0.8868', '0.6481', '0.2658', '0.4983-0.5911*j'] self.assert_function_values('arcsech', sech_vals, results) results = results[1:] csch_vals = ['1.919', '0.8509', '0.2757', '0.3039-0.6215*j'] self.assert_function_values('arccsch', csch_vals, results) coth_vals = ['2.164', '1.313', '1.0373', '0.868-0.2176*j'] self.assert_function_values('arccoth', coth_vals, results) def test_other_functions(self): """ Test the non-trig functions provided in calc.py Specifically: sqrt, log10, log2, ln, abs, fact, factorial """ # Test sqrt self.assert_function_values('sqrt', [0, 1, 2, 1024], # -1 [0, 1, 1.414, 32]) # 1j # sqrt(-1) is NAN not j (!!). # Test logs self.assert_function_values('log10', [0.1, 1, 3.162, 1000000, '1+j'], [-1, 0, 0.5, 6, 0.151 + 0.341j]) self.assert_function_values('log2', [0.5, 1, 1.414, 1024, '1+j'], [-1, 0, 0.5, 10, 0.5 + 1.133j]) self.assert_function_values('ln', [0.368, 1, 1.649, 2.718, 42, '1+j'], [-1, 0, 0.5, 1, 3.738, 0.347 + 0.785j]) # Test abs self.assert_function_values('abs', [-1, 0, 1, 'j'], [1, 0, 1, 1]) # Test factorial fact_inputs = [0, 1, 3, 7] fact_values = [1, 1, 6, 5040] self.assert_function_values('fact', fact_inputs, fact_values) self.assert_function_values('factorial', fact_inputs, fact_values) self.assertRaises(ValueError, calc.evaluator, {}, {}, "fact(-1)") self.assertRaises(ValueError, calc.evaluator, {}, {}, "fact(0.5)") self.assertRaises(ValueError, calc.evaluator, {}, {}, "factorial(-1)") self.assertRaises(ValueError, calc.evaluator, {}, {}, "factorial(0.5)") def test_constants(self): """ Test the default constants provided in calc.py which are: j (complex number), e, pi, k, c, T, q """ # Of the form ('expr', python value, tolerance (or None for exact)) default_variables = [('j', 1j, None), ('e', 2.7183, 1e-3), ('pi', 3.1416, 1e-3), # c = speed of light ('c', 2.998e8, 1e5), # 0 deg C = T Kelvin ('T', 298.15, 0.01), # Note k = scipy.constants.k = 1.3806488e-23 ('k', 1.3806488e-23, 1e-26), # Note q = scipy.constants.e = 1.602176565e-19 ('q', 1.602176565e-19, 1e-22)] for (variable, value, tolerance) in default_variables: fail_msg = "Failed on constant '{0}', not within bounds".format( variable) result = calc.evaluator({}, {}, variable) if tolerance is None: self.assertEqual(value, result, msg=fail_msg) else: self.assertAlmostEqual(value, result, delta=tolerance, msg=fail_msg) def test_complex_expression(self): """ Calculate combinations of operators and default functions """ self.assertAlmostEqual( calc.evaluator({}, {}, "(2^2+1.0)/sqrt(5e0)*5-1"), 10.180, delta=1e-3) self.assertAlmostEqual( calc.evaluator({}, {}, "1+1/(1+1/(1+1/(1+1)))"), 1.6, delta=1e-3) self.assertAlmostEqual( calc.evaluator({}, {}, "10||sin(7+5)"), -0.567, delta=0.01) self.assertAlmostEqual(calc.evaluator({}, {}, "sin(e)"), 0.41, delta=0.01) self.assertAlmostEqual(calc.evaluator({}, {}, "k*T/q"), 0.025, delta=1e-3) self.assertAlmostEqual(calc.evaluator({}, {}, "e^(j*pi)"), -1, delta=1e-5) def test_simple_vars(self): """ Substitution of variables into simple equations """ variables = {'x': 9.72, 'y': 7.91, 'loooooong': 6.4} # Should not change value of constant # even with different numbers of variables... self.assertEqual(calc.evaluator({'x': 9.72}, {}, '13'), 13) self.assertEqual(calc.evaluator({'x': 9.72, 'y': 7.91}, {}, '13'), 13) self.assertEqual(calc.evaluator(variables, {}, '13'), 13) # Easy evaluation self.assertEqual(calc.evaluator(variables, {}, 'x'), 9.72) self.assertEqual(calc.evaluator(variables, {}, 'y'), 7.91) self.assertEqual(calc.evaluator(variables, {}, 'loooooong'), 6.4) # Test a simple equation self.assertAlmostEqual(calc.evaluator(variables, {}, '3*x-y'), 21.25, delta=0.01) # = 3 * 9.72 - 7.91 self.assertAlmostEqual(calc.evaluator(variables, {}, 'x*y'), 76.89, delta=0.01) self.assertEqual(calc.evaluator({'x': 9.72, 'y': 7.91}, {}, "13"), 13) self.assertEqual(calc.evaluator(variables, {}, "13"), 13) self.assertEqual( calc.evaluator({ 'a': 2.2997471478310274, 'k': 9, 'm': 8, 'x': 0.66009498411213041}, {}, "5"), 5) def test_variable_case_sensitivity(self): """ Test the case sensitivity flag and corresponding behavior """ self.assertEqual( calc.evaluator({'R1': 2.0, 'R3': 4.0}, {}, "r1*r3"), 8.0) variables = {'t': 1.0} self.assertEqual(calc.evaluator(variables, {}, "t"), 1.0) self.assertEqual(calc.evaluator(variables, {}, "T"), 1.0) self.assertEqual(calc.evaluator(variables, {}, "t", cs=True), 1.0) # Recall 'T' is a default constant, with value 298.15 self.assertAlmostEqual(calc.evaluator(variables, {}, "T", cs=True), 298, delta=0.2) def test_simple_funcs(self): """ Subsitution of custom functions """ variables = {'x': 4.712} functions = {'id': lambda x: x} self.assertEqual(calc.evaluator({}, functions, 'id(2.81)'), 2.81) self.assertEqual(calc.evaluator({}, functions, 'id(2.81)'), 2.81) self.assertEqual(calc.evaluator(variables, functions, 'id(x)'), 4.712) functions.update({'f': numpy.sin}) self.assertAlmostEqual(calc.evaluator(variables, functions, 'f(x)'), -1, delta=1e-3) def test_function_case_sensitivity(self): """ Test the case sensitivity of functions """ functions = {'f': lambda x: x, 'F': lambda x: x + 1} # Test case insensitive evaluation # Both evaulations should call the same function self.assertEqual(calc.evaluator({}, functions, 'f(6)'), calc.evaluator({}, functions, 'F(6)')) # Test case sensitive evaluation self.assertNotEqual(calc.evaluator({}, functions, 'f(6)', cs=True), calc.evaluator({}, functions, 'F(6)', cs=True)) def test_undefined_vars(self): """ Check to see if the evaluator catches undefined variables """ variables = {'R1': 2.0, 'R3': 4.0} self.assertRaises(calc.UndefinedVariable, calc.evaluator, {}, {}, "5+7 QWSEKO") self.assertRaises(calc.UndefinedVariable, calc.evaluator, {'r1': 5}, {}, "r1+r2") self.assertRaises(calc.UndefinedVariable, calc.evaluator, variables, {}, "r1*r3", cs=True)