# Compute grades using real division, with no integer truncation from __future__ import division import random import logging from collections import defaultdict from django.conf import settings from django.contrib.auth.models import User from .model_data import ModelDataCache, LmsKeyValueStore from xblock.core import Scope from .module_render import get_module from xmodule import graders from xmodule.capa_module import CapaModule from xmodule.course_module import CourseDescriptor from xmodule.graders import Score from .models import StudentModule log = logging.getLogger("mitx.courseware") def yield_module_descendents(module): stack = module.get_display_items() stack.reverse() while len(stack) > 0: next_module = stack.pop() stack.extend(next_module.get_display_items()) yield next_module def yield_dynamic_descriptor_descendents(descriptor, module_creator): """ This returns all of the descendants of a descriptor. If the descriptor has dynamic children, the module will be created using module_creator and the children (as descriptors) of that module will be returned. """ def get_dynamic_descriptor_children(descriptor): if descriptor.has_dynamic_children(): module = module_creator(descriptor) return module.get_child_descriptors() else: return descriptor.get_children() stack = [descriptor] while len(stack) > 0: next_descriptor = stack.pop() stack.extend(get_dynamic_descriptor_children(next_descriptor)) yield next_descriptor def yield_problems(request, course, student): """ Return an iterator over capa_modules that this student has potentially answered. (all that student has answered will definitely be in the list, but there may be others as well). """ grading_context = course.grading_context descriptor_locations = (descriptor.location.url() for descriptor in grading_context['all_descriptors']) existing_student_modules = set(StudentModule.objects.filter( module_state_key__in=descriptor_locations ).values_list('module_state_key', flat=True)) sections_to_list = [] for section_format, sections in grading_context['graded_sections'].iteritems(): for section in sections: section_descriptor = section['section_descriptor'] # If the student hasn't seen a single problem in the section, skip it. for moduledescriptor in section['xmoduledescriptors']: if moduledescriptor.location.url() in existing_student_modules: sections_to_list.append(section_descriptor) break model_data_cache = ModelDataCache(sections_to_list, course.id, student) for section_descriptor in sections_to_list: section_module = get_module(student, request, section_descriptor.location, model_data_cache, course.id) if section_module is None: # student doesn't have access to this module, or something else # went wrong. # log.debug("couldn't get module for student {0} for section location {1}" # .format(student.username, section_descriptor.location)) continue for problem in yield_module_descendents(section_module): if isinstance(problem, CapaModule): yield problem def answer_distributions(request, course): """ Given a course_descriptor, compute frequencies of answers for each problem: Format is: dict: (problem url_name, problem display_name, problem_id) -> (dict : answer -> count) TODO (vshnayder): this is currently doing a full linear pass through all students and all problems. This will be just a little slow. """ counts = defaultdict(lambda: defaultdict(int)) enrolled_students = User.objects.filter(courseenrollment__course_id=course.id) for student in enrolled_students: for capa_module in yield_problems(request, course, student): for problem_id in capa_module.lcp.student_answers: # Answer can be a list or some other unhashable element. Convert to string. answer = str(capa_module.lcp.student_answers[problem_id]) key = (capa_module.url_name, capa_module.display_name_with_default, problem_id) counts[key][answer] += 1 return counts def grade(student, request, course, model_data_cache=None, keep_raw_scores=False): """ This grades a student as quickly as possible. It retuns the output from the course grader, augmented with the final letter grade. The keys in the output are: course: a CourseDescriptor - grade : A final letter grade. - percent : The final percent for the class (rounded up). - section_breakdown : A breakdown of each section that makes up the grade. (For display) - grade_breakdown : A breakdown of the major components that make up the final grade. (For display) - keep_raw_scores : if True, then value for key 'raw_scores' contains scores for every graded module More information on the format is in the docstring for CourseGrader. """ grading_context = course.grading_context raw_scores = [] if model_data_cache is None: model_data_cache = ModelDataCache(grading_context['all_descriptors'], course.id, student) totaled_scores = {} # This next complicated loop is just to collect the totaled_scores, which is # passed to the grader for section_format, sections in grading_context['graded_sections'].iteritems(): format_scores = [] for section in sections: section_descriptor = section['section_descriptor'] section_name = section_descriptor.display_name_with_default should_grade_section = False # If we haven't seen a single problem in the section, we don't have to grade it at all! We can assume 0% for moduledescriptor in section['xmoduledescriptors']: # Create a fake key to pull out a StudentModule object from the ModelDataCache key = LmsKeyValueStore.Key( Scope.student_state, student.id, moduledescriptor.location, None ) if model_data_cache.find(key): should_grade_section = True break if should_grade_section: scores = [] def create_module(descriptor): # TODO: We need the request to pass into here. If we could forgo that, our arguments # would be simpler return get_module(student, request, descriptor.location, model_data_cache, course.id) for module_descriptor in yield_dynamic_descriptor_descendents(section_descriptor, create_module): (correct, total) = get_score(course.id, student, module_descriptor, create_module, model_data_cache) if correct is None and total is None: continue if settings.GENERATE_PROFILE_SCORES: # for debugging! if total > 1: correct = random.randrange(max(total - 2, 1), total + 1) else: correct = total graded = module_descriptor.lms.graded if not total > 0: #We simply cannot grade a problem that is 12/0, because we might need it as a percentage graded = False scores.append(Score(correct, total, graded, module_descriptor.display_name_with_default)) section_total, graded_total = graders.aggregate_scores(scores, section_name) if keep_raw_scores: raw_scores += scores else: section_total = Score(0.0, 1.0, False, section_name) graded_total = Score(0.0, 1.0, True, section_name) #Add the graded total to totaled_scores if graded_total.possible > 0: format_scores.append(graded_total) else: log.exception("Unable to grade a section with a total possible score of zero. " + str(section_descriptor.location)) totaled_scores[section_format] = format_scores grade_summary = course.grader.grade(totaled_scores, generate_random_scores=settings.GENERATE_PROFILE_SCORES) # We round the grade here, to make sure that the grade is an whole percentage and # doesn't get displayed differently than it gets grades grade_summary['percent'] = round(grade_summary['percent'] * 100 + 0.05) / 100 letter_grade = grade_for_percentage(course.grade_cutoffs, grade_summary['percent']) grade_summary['grade'] = letter_grade grade_summary['totaled_scores'] = totaled_scores # make this available, eg for instructor download & debugging if keep_raw_scores: grade_summary['raw_scores'] = raw_scores # way to get all RAW scores out to instructor # so grader can be double-checked return grade_summary def grade_for_percentage(grade_cutoffs, percentage): """ Returns a letter grade as defined in grading_policy (e.g. 'A' 'B' 'C' for 6.002x) or None. Arguments - grade_cutoffs is a dictionary mapping a grade to the lowest possible percentage to earn that grade. - percentage is the final percent across all problems in a course """ letter_grade = None # Possible grades, sorted in descending order of score descending_grades = sorted(grade_cutoffs, key=lambda x: grade_cutoffs[x], reverse=True) for possible_grade in descending_grades: if percentage >= grade_cutoffs[possible_grade]: letter_grade = possible_grade break return letter_grade # TODO: This method is not very good. It was written in the old course style and # then converted over and performance is not good. Once the progress page is redesigned # to not have the progress summary this method should be deleted (so it won't be copied). def progress_summary(student, request, course, model_data_cache): """ This pulls a summary of all problems in the course. Returns - courseware_summary is a summary of all sections with problems in the course. It is organized as an array of chapters, each containing an array of sections, each containing an array of scores. This contains information for graded and ungraded problems, and is good for displaying a course summary with due dates, etc. Arguments: student: A User object for the student to grade course: A Descriptor containing the course to grade model_data_cache: A ModelDataCache initialized with all instance_modules for the student If the student does not have access to load the course module, this function will return None. """ # TODO: We need the request to pass into here. If we could forgo that, our arguments # would be simpler course_module = get_module(student, request, course.location, model_data_cache, course.id, depth=None) if not course_module: # This student must not have access to the course. return None chapters = [] # Don't include chapters that aren't displayable (e.g. due to error) for chapter_module in course_module.get_display_items(): # Skip if the chapter is hidden if chapter_module.lms.hide_from_toc: continue sections = [] for section_module in chapter_module.get_display_items(): # Skip if the section is hidden if section_module.lms.hide_from_toc: continue # Same for sections graded = section_module.lms.graded scores = [] module_creator = section_module.system.get_module for module_descriptor in yield_dynamic_descriptor_descendents(section_module.descriptor, module_creator): course_id = course.id (correct, total) = get_score(course_id, student, module_descriptor, module_creator, model_data_cache) if correct is None and total is None: continue scores.append(Score(correct, total, graded, module_descriptor.display_name_with_default)) scores.reverse() section_total, graded_total = graders.aggregate_scores( scores, section_module.display_name_with_default) format = section_module.lms.format if section_module.lms.format is not None else '' sections.append({ 'display_name': section_module.display_name_with_default, 'url_name': section_module.url_name, 'scores': scores, 'section_total': section_total, 'format': format, 'due': section_module.lms.due, 'graded': graded, }) chapters.append({'course': course.display_name_with_default, 'display_name': chapter_module.display_name_with_default, 'url_name': chapter_module.url_name, 'sections': sections}) return chapters def get_score(course_id, user, problem_descriptor, module_creator, model_data_cache): """ Return the score for a user on a problem, as a tuple (correct, total). e.g. (5,7) if you got 5 out of 7 points. If this problem doesn't have a score, or we couldn't load it, returns (None, None). user: a Student object problem_descriptor: an XModuleDescriptor module_creator: a function that takes a descriptor, and returns the corresponding XModule for this user. Can return None if user doesn't have access, or if something else went wrong. cache: A ModelDataCache """ if not user.is_authenticated(): return (None, None) if problem_descriptor.always_recalculate_grades: problem = module_creator(problem_descriptor) d = problem.get_score() if d is not None: return (d['score'], d['total']) else: return (None, None) if not (problem_descriptor.stores_state and problem_descriptor.has_score): # These are not problems, and do not have a score return (None, None) # Create a fake KeyValueStore key to pull out the StudentModule key = LmsKeyValueStore.Key( Scope.student_state, user.id, problem_descriptor.location, None ) student_module = model_data_cache.find(key) if student_module is not None and student_module.max_grade is not None: correct = student_module.grade if student_module.grade is not None else 0 total = student_module.max_grade else: # If the problem was not in the cache, or hasn't been graded yet, # we need to instantiate the problem. # Otherwise, the max score (cached in student_module) won't be available problem = module_creator(problem_descriptor) if problem is None: return (None, None) correct = 0.0 total = problem.max_score() # Problem may be an error module (if something in the problem builder failed) # In which case total might be None if total is None: return (None, None) #Now we re-weight the problem, if specified weight = problem_descriptor.weight if weight is not None: if total == 0: log.exception("Cannot reweight a problem with zero total points. Problem: " + str(student_module)) return (correct, total) correct = correct * weight / total total = weight return (correct, total)