Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
edx-platform
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
edx-platform
Commits
c7e72c28
Commit
c7e72c28
authored
Feb 20, 2012
by
Kyle Fiedler
Browse files
Options
Browse Files
Download
Plain Diff
merged heads
parents
c423e17c
0807cf81
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
357 additions
and
331 deletions
+357
-331
6002x-faq.html
+13
-4
book_toc.html
+339
-322
profile_graphs.js
+1
-1
staticbook.html
+4
-4
No files found.
6002x-faq.html
View file @
c7e72c28
...
...
@@ -55,10 +55,19 @@ assignments and exams. </p>
<h2>
I just enrolled for the course. I have not received any form
of acknowledgement that I have enrolled.
</h2>
<p>
You should receive a single activation e-mail. If you did not,
check your spam folder, or try to register again with your correct
e-mail address and a new username (most errors are from typos in
e-mail addresses).
</p>
<p>
You should receive a single activation e-mail. If you did not, the
most common issues are:
<ul>
<li>
Typo in e-mail address
<li>
Old browser. We recommend trying a modern version of Firefox or Chrome
<li>
JavaScript disabled
<li>
Activation e-mail in spam folder. Check spam folder.
<li>
Non-unique username. Try adding a random string at the end.
</ul>
<p>
If you run into issues, try recreating your account. There is no need
to do anything about the old account, if any. If it is not activated
through the link in the e-mail, it will disappear later.
<h2>
How do I drop the course?
</h2>
...
...
book_toc.html
View file @
c7e72c28
<li><a
href=
"javascript:goto_page(9)"
>
Contents ix
</a>
<li><a
href=
"javascript:goto_page(1)"
>
Preamble i
</a>
<ul>
<li><a
href=
"javascript:goto_page(1)"
>
Comments on the Book i
</a>
<li><a
href=
"javascript:goto_page(4)"
>
About the Authors iv
</a>
<li><a
href=
"javascript:goto_page(7)"
>
Dedication vii
</a>
<li><a
href=
"javascript:goto_page(19)"
>
Preface xix
</a>
<li><a
href=
"javascript:goto_page(19)"
>
Approach xix
</a>
<li><a
href=
"javascript:goto_page(21)"
>
Overview xxi
</a>
<li><a
href=
"javascript:goto_page(23)"
>
Course Organization xxiii
</a>
<li><a
href=
"javascript:goto_page(23)"
>
Web Supplements xxiii
</a>
<li><a
href=
"javascript:goto_page(24)"
>
Acknowledgments xxiv
</a>
</ul>
<li><a
href=
"javascript:goto_page(27)"
>
The Circuit Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(27)"
>
The Power of Abstraction
</a>
<li><a
href=
"javascript:goto_page(29)"
>
The Lumped Circuit Abstraction
</a>
<li><a
href=
"javascript:goto_page(33)"
>
The Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(37)"
>
Limitations of the Lumped Circuit Abstraction
</a>
<li><a
href=
"javascript:goto_page(39)"
>
Practical Two-Terminal Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(40)"
>
Batteries
</a>
<li><a
href=
"javascript:goto_page(42)"
>
Linear Resistors
</a>
<li><a
href=
"javascript:goto_page(49)"
>
Associated Variables Convention
</a>
</ul>
<li><a
href=
"javascript:goto_page(53)"
>
Ideal Two-Terminal Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(54)"
>
Ideal Voltage Sources, Wires and Resistors
</a>
<li><a
href=
"javascript:goto_page(56)"
>
Element Laws
</a>
<li><a
href=
"javascript:goto_page(57)"
>
The Current Source
</a>
</ul>
<li><a
href=
"javascript:goto_page(60)"
>
Modeling Physical Elements
</a>
<li><a
href=
"javascript:goto_page(64)"
>
Signal Representation
</a>
<ul>
<li><a
href=
"javascript:goto_page(65)"
>
Analog Signals
</a>
<li><a
href=
"javascript:goto_page(66)"
>
Digital Signals
</a>
</ul>
<li><a
href=
"javascript:goto_page(70)"
>
Summary
</a>
<li><a
href=
"javascript:goto_page(27)"
>
1 The Circuit Abstraction 3
</a>
<ul>
<li><a
href=
"javascript:goto_page(27)"
>
1.1 The Power of Abstraction 3
</a>
<li><a
href=
"javascript:goto_page(29)"
>
1.2 The Lumped Circuit Abstraction 4
</a>
<li><a
href=
"javascript:goto_page(33)"
>
1.3 The Lumped Matter Discipline 9
</a>
<li><a
href=
"javascript:goto_page(37)"
>
1.4 Limitations of the Lumped Circuit Abstraction 13
</a>
<li><a
href=
"javascript:goto_page(39)"
>
1.5 Practical Two-Terminal Elements 15
</a>
<ul>
<li><a
href=
"javascript:goto_page(40)"
>
1.5.1 Batteries 16
</a>
<li><a
href=
"javascript:goto_page(42)"
>
1.5.2 Linear Resistors 18
</a>
<li><a
href=
"javascript:goto_page(49)"
>
1.5.3 Associated Variables Convention 25
</a>
</ul>
<li><a
href=
"javascript:goto_page(53)"
>
1.6 Ideal Two-Terminal Elements 29
</a>
<ul>
<li><a
href=
"javascript:goto_page(54)"
>
1.6.1 Ideal Voltage Sources, Wires and Resistors 30
</a>
<li><a
href=
"javascript:goto_page(56)"
>
1.6.2 Element Laws 32
</a>
<li><a
href=
"javascript:goto_page(57)"
>
1.6.3 The Current Source 33
</a>
</ul>
<li><a
href=
"javascript:goto_page(60)"
>
1.7 Modeling Physical Elements 36
</a>
<li><a
href=
"javascript:goto_page(64)"
>
1.8 Signal Representation 40
</a>
<ul>
<li><a
href=
"javascript:goto_page(65)"
>
1.8.1 Analog Signals 41
</a>
<li><a
href=
"javascript:goto_page(66)"
>
1.8.3 Digital Signals 42
</a>
</ul>
<li><a
href=
"javascript:goto_page(70)"
>
1.9 Summary 46
</a>
</ul>
<li><a
href=
"javascript:goto_page(77)"
>
Resistive Networks
</a>
<ul>
<li><a
href=
"javascript:goto_page(78)"
>
Terminology
</a>
<li><a
href=
"javascript:goto_page(79)"
>
Kirchhoff's Laws
</a>
<ul>
<li><a
href=
"javascript:goto_page(80)"
>
KCL
</a>
<li><a
href=
"javascript:goto_page(84)"
>
KVL
</a>
</ul>
<li><a
href=
"javascript:goto_page(90)"
>
Circuit Analysis: Basic Method
</a>
<ul>
<li><a
href=
"javascript:goto_page(91)"
>
Single-Resistor Circuits
</a>
<li><a
href=
"javascript:goto_page(94)"
>
Quick Intuitive Analysis of Single-Resistor Circuits
</a>
<li><a
href=
"javascript:goto_page(95)"
>
Energy Conservation
</a>
<li><a
href=
"javascript:goto_page(97)"
>
Voltage and Current Dividers
</a>
<li><a
href=
"javascript:goto_page(99)"
>
Voltage Dividers
</a>
<li><a
href=
"javascript:goto_page(100)"
>
Resistors in Series
</a>
<li><a
href=
"javascript:goto_page(104)"
>
Current Dividers
</a>
<li><a
href=
"javascript:goto_page(108)"
>
Resistors in Parallel
</a>
<li><a
href=
"javascript:goto_page(108)"
>
A More Complex Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(131)"
>
Intuitive Method of Circuit Analysis
</a>
<li><a
href=
"javascript:goto_page(132)"
>
More Examples
</a>
<li><a
href=
"javascript:goto_page(122)"
>
Dependent Sources and the Control Concept
</a>
<ul>
<li><a
href=
"javascript:goto_page(126)"
>
Circuits with Dependent Sources
</a>
</ul>
<li><a
href=
"javascript:goto_page(131)"
>
A Formulation Suitable for a Computer Solution *
</a>
<li><a
href=
"javascript:goto_page(132)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(77)"
>
2 Resistive Networks 53
</a>
<ul>
<li><a
href=
"javascript:goto_page(78)"
>
2.1 Terminology 54
</a>
<li><a
href=
"javascript:goto_page(79)"
>
2.2 Kirchhoff's Laws 55
</a>
<ul>
<li><a
href=
"javascript:goto_page(80)"
>
2.2.1 KCL 56
</a>
<li><a
href=
"javascript:goto_page(84)"
>
2.2.1 KVL 60
</a>
</ul>
<li><a
href=
"javascript:goto_page(90)"
>
2.3 Circuit Analysis: Basic Method 66
</a>
<ul>
<li><a
href=
"javascript:goto_page(91)"
>
2.3.1 Single-Resistor Circuits 67
</a>
<li><a
href=
"javascript:goto_page(94)"
>
2.3.2 Quick Intuitive Analysis of Single-Resistor Circuits 70
</a>
<li><a
href=
"javascript:goto_page(95)"
>
2.3.3 Energy Conservation 71
</a>
<li><a
href=
"javascript:goto_page(97)"
>
2.3.4 Voltage and Current Dividers 73
</a>
<li><a
href=
"javascript:goto_page(99)"
>
2.3.4.1 Voltage Dividers 73
</a>
<li><a
href=
"javascript:goto_page(100)"
>
2.3.4.2 Resistors in Series 76
</a>
<li><a
href=
"javascript:goto_page(104)"
>
2.3.4.3 Current Dividers 80
</a>
<li><a
href=
"javascript:goto_page(108)"
>
2.3.4.4 Resistors in Parallel 82
</a>
<li><a
href=
"javascript:goto_page(108)"
>
2.3.5 A More Complex Circuit 84
</a>
</ul>
<li><a
href=
"javascript:goto_page(131)"
>
2.4 Intuitive Method of Circuit Analysis 107
</a>
<li><a
href=
"javascript:goto_page(132)"
>
2.5 More Examples 108
</a>
<li><a
href=
"javascript:goto_page(122)"
>
2.6 Dependent Sources and the Control Concept 98
</a>
<ul>
<li><a
href=
"javascript:goto_page(126)"
>
2.6.1 Circuits with Dependent Sources 102
</a>
</ul>
<li><a
href=
"javascript:goto_page(131)"
>
2.7 A Formulation Suitable for a Computer Solution * 107
</a>
<li><a
href=
"javascript:goto_page(132)"
>
2.8 Summary 108
</a>
</ul>
<li><a
href=
"javascript:goto_page(143)"
>
Network Theorems
</a>
<ul>
<li><a
href=
"javascript:goto_page(143)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(143)"
>
The Node Voltage
</a>
<li><a
href=
"javascript:goto_page(149)"
>
The Node Method
</a>
<ul>
<li><a
href=
"javascript:goto_page(154)"
>
Node Method: A Second Example
</a>
<li><a
href=
"javascript:goto_page(159)"
>
Floating Independent Voltage Sources
</a>
<li><a
href=
"javascript:goto_page(163)"
>
Dependent Sources and the Node Method
</a>
<li><a
href=
"javascript:goto_page(169)"
>
The Conductance and Source Matrices *}
</a>
</ul>
<li><a
href=
"javascript:goto_page(169)"
>
Loop Method *
</a>
<li><a
href=
"javascript:goto_page(169)"
>
Superposition
</a>
<ul>
<li><a
href=
"javascript:goto_page(176)"
>
Superposition Rules for Dependent Sources
</a>
</ul>
<li><a
href=
"javascript:goto_page(182)"
>
Th\'e}venin's Theorem and Norton's Theorem
</a>
<ul>
<li><a
href=
"javascript:goto_page(182)"
>
The Th\'e}venin Equivalent Network
</a>
<li><a
href=
"javascript:goto_page(192)"
>
The Norton Equivalent Network
</a>
<li><a
href=
"javascript:goto_page(195)"
>
More Examples
</a>
</ul>
<li><a
href=
"javascript:goto_page(201)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(143)"
>
3 Network Theorems 119
</a>
<ul>
<li><a
href=
"javascript:goto_page(143)"
>
3.1 Introduction 119
</a>
<li><a
href=
"javascript:goto_page(143)"
>
3.2 The Node Voltage 119
</a>
<li><a
href=
"javascript:goto_page(149)"
>
3.3 The Node Method 125
</a>
<ul>
<li><a
href=
"javascript:goto_page(154)"
>
3.3.1 Node Method: A Second Example 130
</a>
<li><a
href=
"javascript:goto_page(159)"
>
3.3.2 Floating Independent Voltage Sources 135
</a>
<li><a
href=
"javascript:goto_page(163)"
>
3.3.3 Dependent Sources and the Node Method 139
</a>
<li><a
href=
"javascript:goto_page(169)"
>
3.3.4 The Conductance and Source Matrices * 145
</a>
</ul>
<li><a
href=
"javascript:goto_page(169)"
>
3.4 Loop Method * 145
</a>
<li><a
href=
"javascript:goto_page(169)"
>
3.5 Superposition 145
</a>
<ul>
<li><a
href=
"javascript:goto_page(176)"
>
3.5.1 Superposition Rules for Dependent Sources 152
</a>
</ul>
<li><a
href=
"javascript:goto_page(182)"
>
3.6 Thevenin's Theorem and Norton's Theorem 158
</a>
<ul>
<li><a
href=
"javascript:goto_page(182)"
>
3.6.1 The Thevenin Equivalent Network 158
</a>
<li><a
href=
"javascript:goto_page(192)"
>
3.6.2 The Norton Equivalent Network 168
</a>
<li><a
href=
"javascript:goto_page(195)"
>
3.6.3 More Examples 171
</a>
</ul>
<li><a
href=
"javascript:goto_page(201)"
>
3.7 Summary 177
</a>
</ul>
<li><a
href=
"javascript:goto_page(217)"
>
Analysis of Nonlinear Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(217)"
>
Introduction to Nonlinear Elements
</a>
<li><a
href=
"javascript:goto_page(221)"
>
Analytical Solutions
</a>
<li><a
href=
"javascript:goto_page(227)"
>
Graphical Analysis
</a>
<li><a
href=
"javascript:goto_page(230)"
>
Piecewise Linear Analysis
</a>
<ul>
<li><a
href=
"javascript:goto_page(238)"
>
Improved Piecewise Linear Models for Nonlinear Elements *
</a>
</ul>
<li><a
href=
"javascript:goto_page(238)"
>
Incremental Analysis
</a>
<li><a
href=
"javascript:goto_page(253)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(217)"
>
4 Analysis of Nonlinear Circuits 193
</a>
<ul>
<li><a
href=
"javascript:goto_page(217)"
>
4.1 Introduction to Nonlinear Elements 193
</a>
<li><a
href=
"javascript:goto_page(221)"
>
4.2 Analytical Solutions 197
</a>
<li><a
href=
"javascript:goto_page(227)"
>
4.3 Graphical Analysis 203
</a>
<li><a
href=
"javascript:goto_page(230)"
>
4.4 Piecewise Linear Analysis 206
</a>
<ul>
<li><a
href=
"javascript:goto_page(238)"
>
4.4.1 Improved Piecewise Linear Models for Nonlinear Elements * 214
</a>
</ul>
<li><a
href=
"javascript:goto_page(238)"
>
4.5 Incremental Analysis 214
</a>
<li><a
href=
"javascript:goto_page(253)"
>
4.6 Summary 229
</a>
</ul>
<li><a
href=
"javascript:goto_page(267)"
>
The Digital Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(269)"
>
Voltage Levels and the Static Discipline
</a>
<li><a
href=
"javascript:goto_page(256+24)"
>
Boolean Logic
</a>
<li><a
href=
"javascript:goto_page(258+24)"
>
Combinational Gates
</a>
<li><a
href=
"javascript:goto_page(261+24)"
>
Standard Sum-of-Products Representation
</a>
<li><a
href=
"javascript:goto_page(262+24)"
>
Simplifying Logic Expressions *
</a>
<li><a
href=
"javascript:goto_page(267+24)"
>
Number Representation
</a>
<li><a
href=
"javascript:goto_page(274+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(267)"
>
5 The Digital Abstraction 243
</a>
<ul>
<li><a
href=
"javascript:goto_page(269)"
>
5.1 Voltage Levels and the Static Discipline 245
</a>
<li><a
href=
"javascript:goto_page(256+24)"
>
5.2 Boolean Logic 256
</a>
<li><a
href=
"javascript:goto_page(258+24)"
>
5.3 Combinational Gates 258
</a>
<li><a
href=
"javascript:goto_page(261+24)"
>
5.4 Standard Sum-of-Products Representation 261
</a>
<li><a
href=
"javascript:goto_page(262+24)"
>
5.5 Simplifying Logic Expressions * 262
</a>
<li><a
href=
"javascript:goto_page(267+24)"
>
5.6 Number Representation 267
</a>
<li><a
href=
"javascript:goto_page(274+24)"
>
5.7 Summary 274
</a>
</ul>
<li><a
href=
"javascript:goto_page(285+24)"
>
The MOSFET Switch
</a>
<ul>
<li><a
href=
"javascript:goto_page(285+24)"
>
The Switch
</a>
<li><a
href=
"javascript:goto_page(288+24)"
>
Logic Functions Using Switches
</a>
<li><a
href=
"javascript:goto_page(298+24)"
>
The MOSFET Device and Its S Model
</a>
<li><a
href=
"javascript:goto_page(291+24)"
>
MOSFET Switch Implementation of Logic Gates
</a>
<li><a
href=
"javascript:goto_page(296+24)"
>
Static Analysis Using the S Model
</a>
<li><a
href=
"javascript:goto_page(300+24)"
>
The SR Model of the MOSFET
</a>
<li><a
href=
"javascript:goto_page(301+24)"
>
Physical Structure of the MOSFET $*$
</a>
<li><a
href=
"javascript:goto_page(306+24)"
>
Static Analysis Using the SR Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(311+24)"
>
Static Analysis of the \it NAND} Gate Using the SR Model
</a>
</ul>
<li><a
href=
"javascript:goto_page(314+24)"
>
Signal Restoration
</a>
<ul>
<li><a
href=
"javascript:goto_page(314+24)"
>
Signal Restoration and Gain
</a>
<li><a
href=
"javascript:goto_page(317+24)"
>
Signal Restoration and Nonlinearity
</a>
<li><a
href=
"javascript:goto_page(318+24)"
>
Buffer Characteristics and the Static Discipline
</a>
<li><a
href=
"javascript:goto_page(319+24)"
>
Inverter Transfer Characteristics and the Static Discipline
</a>
</ul>
<li><a
href=
"javascript:goto_page(320+24)"
>
Power Consumption in Logic Gates
</a>
<li><a
href=
"javascript:goto_page(321+24)"
>
Active Pullups
</a>
<li><a
href=
"javascript:goto_page(322+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(285+24)"
>
6 The MOSFET Switch 285
</a>
<ul>
<li><a
href=
"javascript:goto_page(285+24)"
>
6.1 The Switch 285
</a>
<li><a
href=
"javascript:goto_page(288+24)"
>
6.2 Logic Functions Using Switches 288
</a>
<li><a
href=
"javascript:goto_page(298+24)"
>
6.3 The MOSFET Device and Its S Model 298
</a>
<li><a
href=
"javascript:goto_page(291+24)"
>
6.4 MOSFET Switch Implementation of Logic Gates 291
</a>
<li><a
href=
"javascript:goto_page(296+24)"
>
6.5 Static Analysis Using the S Model 296
</a>
<li><a
href=
"javascript:goto_page(300+24)"
>
6.6 The SR Model of the MOSFET 300
</a>
<li><a
href=
"javascript:goto_page(301+24)"
>
6.7 Physical Structure of the MOSFET * 301
</a>
<li><a
href=
"javascript:goto_page(306+24)"
>
6.8 Static Analysis Using the SR Model 306
</a>
<ul>
<li><a
href=
"javascript:goto_page(311+24)"
>
6.8.1 Static Analysis of the NAND Gate Using the SR Model 311
</a>
</ul>
<li><a
href=
"javascript:goto_page(314+24)"
>
6.9 Signal Restoration 314
</a>
<ul>
<li><a
href=
"javascript:goto_page(314+24)"
>
6.9.1 Signal Restoration and Gain 314
</a>
<li><a
href=
"javascript:goto_page(317+24)"
>
6.9.2 Signal Restoration and Nonlinearity 317
</a>
<li><a
href=
"javascript:goto_page(318+24)"
>
6.9.3 Buffer Characteristics and the Static Discipline 318
</a>
<li><a
href=
"javascript:goto_page(319+24)"
>
6.9.4 Inverter Transfer Characteristics and the Static Discipline 319
</a>
</ul>
<li><a
href=
"javascript:goto_page(320+24)"
>
6.10 Power Consumption in Logic Gates 320
</a>
<li><a
href=
"javascript:goto_page(321+24)"
>
6.11 Active Pullups 321
</a>
<li><a
href=
"javascript:goto_page(322+24)"
>
6.12 Summary 322
</a>
</ul>
<li><a
href=
"javascript:goto_page(331+24)"
>
The MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(332+24)"
>
Signal Amplification
</a>
<li><a
href=
"javascript:goto_page(332+24)"
>
Review of Dependent Sources
</a>
<li><a
href=
"javascript:goto_page(335+24)"
>
Actual MOSFET Characteristics
</a>
<li><a
href=
"javascript:goto_page(340+24)"
>
The Switch Current Source (SCS) MOSFET Model
</a>
<li><a
href=
"javascript:goto_page(344+24)"
>
The MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(349+24)"
>
Biasing the MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(352+24)"
>
The Amplifier Abstraction and the Saturation Discipline
</a>
</ul>
<li><a
href=
"javascript:goto_page(353+24)"
>
Large Signal Analysis of the MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(353+24)"
>
$v_IN}$ versus $v_OUT}$ in the Saturation Region
</a>
<li><a
href=
"javascript:goto_page(356+24)"
>
Valid Input and Output Voltage Ranges
</a>
<li><a
href=
"javascript:goto_page(363+24)"
>
Alternative Method for Valid Input and Output Voltage Ranges
</a>
z
</ul>
<li><a
href=
"javascript:goto_page(385+24)"
>
Operating Point Selection
</a>
<li><a
href=
"javascript:goto_page(386+24)"
>
Switch Unified (SU) MOSFET Model $*$
</a>
<li><a
href=
"javascript:goto_page(389+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(331+24)"
>
7 The MOSFET Amplifier 331
</a>
<ul>
<li><a
href=
"javascript:goto_page(332+24)"
>
7.1 Signal Amplification 332
</a>
<li><a
href=
"javascript:goto_page(332+24)"
>
7.2 Review of Dependent Sources 332
</a>
<li><a
href=
"javascript:goto_page(335+24)"
>
7.3 Actual MOSFET Characteristics 335
</a>
<li><a
href=
"javascript:goto_page(340+24)"
>
7.4 The Switch Current Source (SCS) MOSFET Model 340
</a>
<li><a
href=
"javascript:goto_page(344+24)"
>
7.5 The MOSFET Amplifier 344
</a>
<ul>
<li><a
href=
"javascript:goto_page(349+24)"
>
7.5.1 Biasing the MOSFET Amplifier 349
</a>
<li><a
href=
"javascript:goto_page(352+24)"
>
7.5.2 The Amplifier Abstraction and the Saturation Discipline 352
</a>
</ul>
<li><a
href=
"javascript:goto_page(353+24)"
>
7.6 Large Signal Analysis of the MOSFET Amplifier 353
</a>
<ul>
<li><a
href=
"javascript:goto_page(353+24)"
>
7.6.1 v_IN versus v_OUT in the Saturation Region 353
</a>
<li><a
href=
"javascript:goto_page(356+24)"
>
7.6.2 Valid Input and Output Voltage Ranges 356
</a>
<li><a
href=
"javascript:goto_page(363+24)"
>
7.6.3 Alternative Method for Valid Input and Output Voltage Ranges 363
</a>
z
</ul>
<li><a
href=
"javascript:goto_page(385+24)"
>
7.7 Operating Point Selection 385
</a>
<li><a
href=
"javascript:goto_page(386+24)"
>
7.8 Switch Unified (SU) MOSFET Model * 386
</a>
<li><a
href=
"javascript:goto_page(389+24)"
>
7.9 Summary 389
</a>
</ul>
<li><a
href=
"javascript:goto_page(405+24)"
>
The Small Signal Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(405+24)"
>
Overview of the Nonlinear MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(405+24)"
>
The Small Signal Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(413+24)"
>
Small Signal Circuit Representation
</a>
<li><a
href=
"javascript:goto_page(418+24)"
>
Small Signal Circuit for the MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(420+24)"
>
Selecting an Operating Point
</a>
<li><a
href=
"javascript:goto_page(423+24)"
>
Input and Output Resistance, Current and Power Gain
</a>
</ul>
<li><a
href=
"javascript:goto_page(447+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(405+24)"
>
8 The Small Signal Model 405
</a>
<ul>
<li><a
href=
"javascript:goto_page(405+24)"
>
8.1 Overview of the Nonlinear MOSFET Amplifier 405
</a>
<li><a
href=
"javascript:goto_page(405+24)"
>
8.2 The Small Signal Model 405
</a>
<ul>
<li><a
href=
"javascript:goto_page(413+24)"
>
8.2.1 Small Signal Circuit Representation 413
</a>
<li><a
href=
"javascript:goto_page(418+24)"
>
8.3.2 Small Signal Circuit for the MOSFET Amplifier 418
</a>
<li><a
href=
"javascript:goto_page(420+24)"
>
8.2.3 Selecting an Operating Point 420
</a>
<li><a
href=
"javascript:goto_page(423+24)"
>
8.2.4 Input and Output Resistance, Current and Power Gain 423
</a>
</ul>
<li><a
href=
"javascript:goto_page(447+24)"
>
8.3 Summary 447
</a>
</ul>
<li><a
href=
"javascript:goto_page(457+24)"
>
Energy Storage Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(461+24)"
>
Constitutive Laws
</a>
<ul>
<li><a
href=
"javascript:goto_page(461+24)"
>
Capacitors
</a>
<li><a
href=
"javascript:goto_page(466+24)"
>
Inductors
</a>
</ul>
<li><a
href=
"javascript:goto_page(470+24)"
>
Series \
&
Parallel Connections
</a>
<ul>
<li><a
href=
"javascript:goto_page(471+24)"
>
Capacitors
</a>
<li><a
href=
"javascript:goto_page(472+24)"
>
Inductors
</a>
</ul>
<li><a
href=
"javascript:goto_page(473+24)"
>
Special Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(473+24)"
>
MOSFET Gate Capacitance
</a>
<li><a
href=
"javascript:goto_page(476+24)"
>
Wiring Loop Inductance
</a>
<li><a
href=
"javascript:goto_page(477+24)"
>
IC Wiring Capacitance and Inductance
</a>
<li><a
href=
"javascript:goto_page(478+24)"
>
Transformers *
</a>
</ul>
<li><a
href=
"javascript:goto_page(480+24)"
>
Simple Circuit Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(482+24)"
>
Sinusoidal Inputs *
</a>
<li><a
href=
"javascript:goto_page(482+24)"
>
Step Inputs
</a>
<li><a
href=
"javascript:goto_page(488+24)"
>
Impulse Inputs
</a>
<li><a
href=
"javascript:goto_page(489+24)"
>
Role Reversal$*$
</a>
</ul>
<li><a
href=
"javascript:goto_page(489+24)"
>
Energy, Charge and Flux Conservation
</a>
<li><a
href=
"javascript:goto_page(492+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(457+24)"
>
9 Energy Storage Elements 457
</a>
<ul>
<li><a
href=
"javascript:goto_page(461+24)"
>
1-Sep Constitutive Laws 461
</a>
<ul>
<li><a
href=
"javascript:goto_page(461+24)"
>
9.1.1 Capacitors 461
</a>
<li><a
href=
"javascript:goto_page(466+24)"
>
9.1.2 Inductors 466
</a>
</ul>
<li><a
href=
"javascript:goto_page(470+24)"
>
9.2 Series
&
Parallel Connections 470
</a>
<ul>
<li><a
href=
"javascript:goto_page(471+24)"
>
9.2.1 Capacitors 471
</a>
<li><a
href=
"javascript:goto_page(472+24)"
>
9.2.2 Inductors 472
</a>
</ul>
<li><a
href=
"javascript:goto_page(473+24)"
>
9.3 Special Examples 473
</a>
<ul>
<li><a
href=
"javascript:goto_page(473+24)"
>
9.3.1 MOSFET Gate Capacitance 473
</a>
<li><a
href=
"javascript:goto_page(476+24)"
>
9.3.2 Wiring Loop Inductance 476
</a>
<li><a
href=
"javascript:goto_page(477+24)"
>
9.3.3 IC Wiring Capacitance and Inductance 477
</a>
<li><a
href=
"javascript:goto_page(478+24)"
>
9.3.4 Transformers * 478
</a>
</ul>
<li><a
href=
"javascript:goto_page(480+24)"
>
9.4 Simple Circuit Examples 480
</a>
<ul>
<li><a
href=
"javascript:goto_page(482+24)"
>
9.4.1 Sinusoidal Inputs * 482
</a>
<li><a
href=
"javascript:goto_page(482+24)"
>
9.4.2 Step Inputs 482
</a>
<li><a
href=
"javascript:goto_page(488+24)"
>
9.4.3 Impulse Inputs 488
</a>
<li><a
href=
"javascript:goto_page(489+24)"
>
9.4.4 Role Reversal * 489
</a>
</ul>
<li><a
href=
"javascript:goto_page(489+24)"
>
9.5 Energy, Charge and Flux Conservation 489
</a>
<li><a
href=
"javascript:goto_page(492+24)"
>
9.6 Summary 492
</a>
</ul>
<li><a
href=
"javascript:goto_page(503+24)"
>
First-order Transients
</a>
<ul>
<li><a
href=
"javascript:goto_page(504+24)"
>
Analysis of RC Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(504+24)"
>
Parallel RC Circuit, Step Input
</a>
<li><a
href=
"javascript:goto_page(509+24)"
>
RC Discharge Transient
</a>
<li><a
href=
"javascript:goto_page(511+24)"
>
Series RC Circuit, Step Input
</a>
<li><a
href=
"javascript:goto_page(515+24)"
>
Series RC Circuit, Square Wave Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(517+24)"
>
Analysis of RL Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(517+24)"
>
Series RL Circuit, Step Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(520+24)"
>
Intuitive Analysis
</a>
<li><a
href=
"javascript:goto_page(525+24)"
>
Propagation Delay and the Digital Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(527+24)"
>
Definitions
</a>
<li><a
href=
"javascript:goto_page(529+24)"
>
Computing $t_pd}$ from the SRC MOSFET Model
</a>
</ul>
<li><a
href=
"javascript:goto_page(538+24)"
>
State and State Variables *
</a>
<ul>
<li><a
href=
"javascript:goto_page(538+24)"
>
The Concept of State
</a>
<li><a
href=
"javascript:goto_page(540+24)"
>
Computer Analysis using the State Equation
</a>
<li><a
href=
"javascript:goto_page(541+24)"
>
Zero-input and Zero-state Response
</a>
<li><a
href=
"javascript:goto_page(544+24)"
>
Solution by Integrating Factors*
</a>
</ul>
<li><a
href=
"javascript:goto_page(545+24)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(545+24)"
>
Effect of Wire Inductance in Digital Circuits
</a>
<li><a
href=
"javascript:goto_page(545+24)"
>
Ramp Inputs and Linearity
</a>
<li><a
href=
"javascript:goto_page(550+24)"
>
Response of an RC Circuit to Short Pulses and the Impulse Response
</a>
<li><a
href=
"javascript:goto_page(553+24)"
>
Intuitive Method for the Impulse Response
</a>
<li><a
href=
"javascript:goto_page(554+24)"
>
Clock Signals and Clock Fanout
</a>
<li><a
href=
"javascript:goto_page(558+24)"
>
RC Response to Decaying Exponential *
</a>
<li><a
href=
"javascript:goto_page(558+24)"
>
Series RL Circuit with Sinewave Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(561+24)"
>
Digital Memory
</a>
<ul>
<li><a
href=
"javascript:goto_page(561+24)"
>
The Concept of Digital State
</a>
<li><a
href=
"javascript:goto_page(562+24)"
>
An Abstract Digital Memory Element
</a>
<li><a
href=
"javascript:goto_page(563+24)"
>
Design of the Digital Memory Element
</a>
<li><a
href=
"javascript:goto_page(567+24)"
>
A Static Memory Element
</a>
</ul>
<li><a
href=
"javascript:goto_page(568+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(503+24)"
>
10 First-order Transients 503
</a>
<ul>
<li><a
href=
"javascript:goto_page(504+24)"
>
10.1.1 Analysis of RC Circuits 504
</a>
<ul>
<li><a
href=
"javascript:goto_page(504+24)"
>
10.1.2 Parallel RC Circuit, Step Input 504
</a>
<li><a
href=
"javascript:goto_page(509+24)"
>
10.1.3 RC Discharge Transient 509
</a>
<li><a
href=
"javascript:goto_page(511+24)"
>
10.1.4 Series RC Circuit, Step Input 511
</a>
<li><a
href=
"javascript:goto_page(515+24)"
>
10.2 Series RC Circuit, Square Wave Input 515
</a>
</ul>
<li><a
href=
"javascript:goto_page(517+24)"
>
10.2.1 Analysis of RL Circuits 517
</a>
<ul>
<li><a
href=
"javascript:goto_page(517+24)"
>
10.3 Series RL Circuit, Step Input 517
</a>
</ul>
<li><a
href=
"javascript:goto_page(520+24)"
>
10.4 Intuitive Analysis 520
</a>
<li><a
href=
"javascript:goto_page(525+24)"
>
10.4.1 Propagation Delay and the Digital Abstraction 525
</a>
<ul>
<li><a
href=
"javascript:goto_page(527+24)"
>
10.4.2 Definitions 527
</a>
<li><a
href=
"javascript:goto_page(529+24)"
>
10.5 Computing t_pd from the SRC MOSFET Model 529
</a>
</ul>
<li><a
href=
"javascript:goto_page(538+24)"
>
10.5.1 State and State Variables * 538
</a>
<ul>
<li><a
href=
"javascript:goto_page(538+24)"
>
10.5.2 The Concept of State 538
</a>
<li><a
href=
"javascript:goto_page(540+24)"
>
10.5.3 Computer Analysis using the State Equation 540
</a>
<li><a
href=
"javascript:goto_page(541+24)"
>
10.5.4 Zero-input and Zero-state Response 541
</a>
<li><a
href=
"javascript:goto_page(544+24)"
>
10.6 Solution by Integrating Factors* 544
</a>
</ul>
<li><a
href=
"javascript:goto_page(545+24)"
>
10.6.1 Additional Examples 545
</a>
<ul>
<li><a
href=
"javascript:goto_page(545+24)"
>
10.6.2 Effect of Wire Inductance in Digital Circuits 545
</a>
<li><a
href=
"javascript:goto_page(545+24)"
>
10.6.3 Ramp Inputs and Linearity 545
</a>
<li><a
href=
"javascript:goto_page(550+24)"
>
10.6.4 Response of an RC Circuit to Short Pulses and the Impulse Response 550
</a>
<li><a
href=
"javascript:goto_page(553+24)"
>
10.6.5 Intuitive Method for the Impulse Response 553
</a>
<li><a
href=
"javascript:goto_page(554+24)"
>
10.6.6 Clock Signals and Clock Fanout 554
</a>
<li><a
href=
"javascript:goto_page(558+24)"
>
10.6.7 RC Response to Decaying Exponential * 558
</a>
<li><a
href=
"javascript:goto_page(558+24)"
>
10.7 Series RL Circuit with Sinewave Input 558
</a>
</ul>
<li><a
href=
"javascript:goto_page(561+24)"
>
10.7.1 Digital Memory 561
</a>
<ul>
<li><a
href=
"javascript:goto_page(561+24)"
>
10.7.2 The Concept of Digital State 561
</a>
<li><a
href=
"javascript:goto_page(562+24)"
>
10.7.3 An Abstract Digital Memory Element 562
</a>
<li><a
href=
"javascript:goto_page(563+24)"
>
10.7.4 Design of the Digital Memory Element 563
</a>
<li><a
href=
"javascript:goto_page(567+24)"
>
10.7.5 A Static Memory Element 567
</a>
</ul>
<li><a
href=
"javascript:goto_page(568+24)"
>
10.8 Summary 568
</a>
</ul>
<li><a
href=
"javascript:goto_page(595+24)"
>
Energy and Power in Digital Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(595+24)"
>
Power and Energy Relations for a Simple RC Circuit
</a>
<li><a
href=
"javascript:goto_page(597+24)"
>
Average Power in an RC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(599+24)"
>
Energy Dissipated during Interval $T_1$
</a>
<li><a
href=
"javascript:goto_page(601+24)"
>
Energy Dissipated during Interval $T_2$
</a>
<li><a
href=
"javascript:goto_page(603+24)"
>
Total Energy Dissipated
</a>
</ul>
<li><a
href=
"javascript:goto_page(604+24)"
>
Power Dissipation in Logic Gates
</a>
<ul>
<li><a
href=
"javascript:goto_page(604+24)"
>
Static Power Dissipation
</a>
<li><a
href=
"javascript:goto_page(605+24)"
>
Total Power Dissipation
</a>
</ul>
<li><a
href=
"javascript:goto_page(611+24)"
>
NMOS Logic
</a>
<li><a
href=
"javascript:goto_page(611+24)"
>
CMOS Logic
</a>
<ul>
<li><a
href=
"javascript:goto_page(616+24)"
>
CMOS Logic Gate Design
</a>
</ul>
<li><a
href=
"javascript:goto_page(618+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(595+24)"
>
11 Energy and Power in Digital Circuits 595
</a>
<ul>
<li><a
href=
"javascript:goto_page(595+24)"
>
11.1 Power and Energy Relations for a Simple RC Circuit 595
</a>
<li><a
href=
"javascript:goto_page(597+24)"
>
11.2 Average Power in an RC Circuit 597
</a>
<ul>
<li><a
href=
"javascript:goto_page(599+24)"
>
11.2.1 Energy Dissipated during Interval T_1 599
</a>
<li><a
href=
"javascript:goto_page(601+24)"
>
11.2.2 Energy Dissipated during Interval T_2 601
</a>
<li><a
href=
"javascript:goto_page(603+24)"
>
11.2.3 Total Energy Dissipated 603
</a>
</ul>
<li><a
href=
"javascript:goto_page(604+24)"
>
11.3 Power Dissipation in Logic Gates 604
</a>
<ul>
<li><a
href=
"javascript:goto_page(604+24)"
>
11.3.1 Static Power Dissipation 604
</a>
<li><a
href=
"javascript:goto_page(605+24)"
>
11.3.2 Total Power Dissipation 605
</a>
</ul>
<li><a
href=
"javascript:goto_page(611+24)"
>
11.4 NMOS Logic 611
</a>
<li><a
href=
"javascript:goto_page(611+24)"
>
11.5 CMOS Logic 611
</a>
<ul>
<li><a
href=
"javascript:goto_page(616+24)"
>
11.5.1 CMOS Logic Gate Design 616
</a>
</ul>
<li><a
href=
"javascript:goto_page(618+24)"
>
11.6 Summary 618
</a>
</ul>
<li><a
href=
"javascript:goto_page(625+24)"
>
Transients in Second Order Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(627+24)"
>
Undriven LC Circuit
</a>
<li><a
href=
"javascript:goto_page(640+24)"
>
Undriven, Series RLC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(644+24)"
>
Under-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(648+24)"
>
Over-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(649+24)"
>
Critically-Damped Dynamics
</a>
</ul>
<li><a
href=
"javascript:goto_page(651+24)"
>
Stored Energy in Transient, Series RLC Circuit
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
Undriven, Parallel RLC Circuit *
</a>
<ul>
<li><a
href=
"javascript:goto_page(654+24)"
>
Under-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
Over-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
Critically-Damped Dynamics
</a>
</ul>
<li><a
href=
"javascript:goto_page(654+24)"
>
Driven, Series RLC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(657+24)"
>
Step Response
</a>
<li><a
href=
"javascript:goto_page(661+24)"
>
Impulse Response *
</a>
</ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
Driven, Parallel RLC Circuit *
</a>
<ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
Step Response
</a>
<li><a
href=
"javascript:goto_page(678+24)"
>
Impulse Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
Intuitive Analysis of Second-Order Circuits
</a>
<li><a
href=
"javascript:goto_page(684+24)"
>
Two-Capacitor Or Two-Inductor Circuits
</a>
<li><a
href=
"javascript:goto_page(689+24)"
>
State-Variable Method *
</a>
<li><a
href=
"javascript:goto_page(691+24)"
>
State-Space Analysis *
</a>
<ul>
<li><a
href=
"javascript:goto_page(691+24)"
>
Numerical Solution *
</a>
</ul>
<li><a
href=
"javascript:goto_page(691+24)"
>
Higher-Order Circuits*
</a>
<li><a
href=
"javascript:goto_page(692+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(625+24)"
>
12 Transients in Second Order Circuits 625
</a>
<ul>
<li><a
href=
"javascript:goto_page(627+24)"
>
12.1 Undriven LC Circuit 627
</a>
<li><a
href=
"javascript:goto_page(640+24)"
>
12.2 Undriven, Series RLC Circuit 640
</a>
<ul>
<li><a
href=
"javascript:goto_page(644+24)"
>
12.2.1 Under-Damped Dynamics 644
</a>
<li><a
href=
"javascript:goto_page(648+24)"
>
12.2.2 Over-Damped Dynamics 648
</a>
<li><a
href=
"javascript:goto_page(649+24)"
>
12.2.3 Critically-Damped Dynamics 649
</a>
</ul>
<li><a
href=
"javascript:goto_page(651+24)"
>
12.3 Stored Energy in Transient, Series RLC Circuit 651
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
12.4 Undriven, Parallel RLC Circuit * 654
</a>
<ul>
<li><a
href=
"javascript:goto_page(654+24)"
>
12.4.1 Under-Damped Dynamics 654
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
12.4.2 Over-Damped Dynamics 654
</a>
<li><a
href=
"javascript:goto_page(654+24)"
>
12.4.3 Critically-Damped Dynamics 654
</a>
</ul>
<li><a
href=
"javascript:goto_page(654+24)"
>
12.5 Driven, Series RLC Circuit 654
</a>
<ul>
<li><a
href=
"javascript:goto_page(657+24)"
>
12.5.1 Step Response 657
</a>
<li><a
href=
"javascript:goto_page(661+24)"
>
12.5.2 Impulse Response * 661
</a>
</ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
12.6 Driven, Parallel RLC Circuit * 678
</a>
<ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
12.6.1 Step Response 678
</a>
<li><a
href=
"javascript:goto_page(678+24)"
>
12.6.2 Impulse Response 678
</a>
</ul>
<li><a
href=
"javascript:goto_page(678+24)"
>
12.7 Intuitive Analysis of Second-Order Circuits 678
</a>
<li><a
href=
"javascript:goto_page(684+24)"
>
12.8 Two-Capacitor Or Two-Inductor Circuits 684
</a>
<li><a
href=
"javascript:goto_page(689+24)"
>
12.9 State-Variable Method * 689
</a>
<li><a
href=
"javascript:goto_page(691+24)"
>
12.10 State-Space Analysis * 691
</a>
<ul>
<li><a
href=
"javascript:goto_page(691+24)"
>
12.10.1 Numerical Solution * 691
</a>
</ul>
<li><a
href=
"javascript:goto_page(691+24)"
>
12.11 Higher-Order Circuits* 691
</a>
<li><a
href=
"javascript:goto_page(692+24)"
>
12.12 Summary 692
</a>
</ul>
<li><a
href=
"javascript:goto_page(703+24)"
>
Sinusoidal Steady State
</a>
<ul>
<li><a
href=
"javascript:goto_page(703+24)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(706+24)"
>
Analysis using Complex Exponential Drive
</a>
<ul>
<li><a
href=
"javascript:goto_page(706+24)"
>
Homogeneous Solution
</a>
<li><a
href=
"javascript:goto_page(707+24)"
>
Particular Solution
</a>
<li><a
href=
"javascript:goto_page(710+24)"
>
Complete Solution
</a>
<li><a
href=
"javascript:goto_page(710+24)"
>
Sinusoidal Steady State Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(712+24)"
>
The Boxes: Impedance
</a>
<ul>
<li><a
href=
"javascript:goto_page(718+24)"
>
Example: Series RL Circuit
</a>
<li><a
href=
"javascript:goto_page(722+24)"
>
Example: Another RC Circuit
</a>
<li><a
href=
"javascript:goto_page(724+24)"
>
Example: RC Circuit with Two Capacitors
</a>
<li><a
href=
"javascript:goto_page(729+24)"
>
Example: Analysis of Small Signal Amplifier with Capacitive Load
</a>
</ul>
<li><a
href=
"javascript:goto_page(731+24)"
>
Frequency Response: Magnitude/Phase vs. Frequency
</a>
<ul>
<li><a
href=
"javascript:goto_page(732+24)"
>
Frequency Response of Capacitors, Inductor
</a>
<li><a
href=
"javascript:goto_page(737+24)"
>
Intuitively Sketching th
</a>
<li><a
href=
"javascript:goto_page(741+24)"
>
The Bode Plot: Sketching the Frequency Response of General Functions *
</a>
</ul>
<li><a
href=
"javascript:goto_page(742+24)"
>
Filters
</a>
<ul>
<li><a
href=
"javascript:goto_page(744+24)"
>
Filter Design Example: Crossover Network
</a>
<li><a
href=
"javascript:goto_page(746+24)"
>
Decoupling Amplifier Stages
</a>
</ul>
<li><a
href=
"javascript:goto_page(751+24)"
>
Time Domain
</a>
<ul>
<li><a
href=
"javascript:goto_page(751+24)"
>
Frequency Domain Analysis
</a>
<li><a
href=
"javascript:goto_page(754+24)"
>
Time Domain Analysis
</a>
<li><a
href=
"javascript:goto_page(756+24)"
>
Comparing Time Domain and Frequency Domain Analyses
</a>
</ul>
<li><a
href=
"javascript:goto_page(757+24)"
>
Power and Energy in an Impedance
</a>
<ul>
<li><a
href=
"javascript:goto_page(758+24)"
>
Arbitrary Impedance
</a>
<li><a
href=
"javascript:goto_page(760+24)"
>
Pure Resistance
</a>
<li><a
href=
"javascript:goto_page(761+24)"
>
Pure Reactance
</a>
<li><a
href=
"javascript:goto_page(763+24)"
>
Example: Power in an RC Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(765+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(703+24)"
>
13 Sinusoidal Steady State 703
</a>
<ul>
<li><a
href=
"javascript:goto_page(703+24)"
>
13.1 Introduction 703
</a>
<li><a
href=
"javascript:goto_page(706+24)"
>
13.2 Analysis using Complex Exponential Drive 706
</a>
<ul>
<li><a
href=
"javascript:goto_page(706+24)"
>
13.2.1 Homogeneous Solution 706
</a>
<li><a
href=
"javascript:goto_page(707+24)"
>
13.2.2 Particular Solution 707
</a>
<li><a
href=
"javascript:goto_page(710+24)"
>
13.2.3 Complete Solution 710
</a>
<li><a
href=
"javascript:goto_page(710+24)"
>
13.2.4 Sinusoidal Steady State Response 710
</a>
</ul>
<li><a
href=
"javascript:goto_page(712+24)"
>
13.3 The Boxes: Impedance 712
</a>
<ul>
<li><a
href=
"javascript:goto_page(718+24)"
>
13.3.1 Example: Series RL Circuit 718
</a>
<li><a
href=
"javascript:goto_page(722+24)"
>
13.3.2 Example: Another RC Circuit 722
</a>
<li><a
href=
"javascript:goto_page(724+24)"
>
13.3.3 Example: RC Circuit with Two Capacitors 724
</a>
<li><a
href=
"javascript:goto_page(729+24)"
>
13.3.4 Example: Analysis of Small Signal Amplifier with Capacitive Load 729
</a>
</ul>
<li><a
href=
"javascript:goto_page(731+24)"
>
13.4 Frequency Response: Magnitude/Phase vs. Frequency 731
</a>
<ul>
<li><a
href=
"javascript:goto_page(732+24)"
>
13.4.1 Frequency Response of Capacitors, Inductor 732
</a>
<li><a
href=
"javascript:goto_page(737+24)"
>
13.4.2 Intuitively Sketching th 737
</a>
<li><a
href=
"javascript:goto_page(741+24)"
>
13.4.3 The Bode Plot: Sketching the Frequency Response of General Functions * 741
</a>
</ul>
<li><a
href=
"javascript:goto_page(742+24)"
>
13.5 Filters 742
</a>
<ul>
<li><a
href=
"javascript:goto_page(744+24)"
>
13.5.1 Filter Design Example: Crossover Network 744
</a>
<li><a
href=
"javascript:goto_page(746+24)"
>
13.5.2 Decoupling Amplifier Stages 746
</a>
</ul>
<li><a
href=
"javascript:goto_page(751+24)"
>
13.6 Time Domain 751
</a>
<ul>
<li><a
href=
"javascript:goto_page(751+24)"
>
13.6.1 Frequency Domain Analysis 751
</a>
<li><a
href=
"javascript:goto_page(754+24)"
>
13.6.2 Time Domain Analysis 754
</a>
<li><a
href=
"javascript:goto_page(756+24)"
>
13.6.3 Comparing Time Domain and Frequency Domain Analyses 756
</a>
</ul>
<li><a
href=
"javascript:goto_page(757+24)"
>
13.7 Power and Energy in an Impedance 757
</a>
<ul>
<li><a
href=
"javascript:goto_page(758+24)"
>
13.7.1 Arbitrary Impedance 758
</a>
<li><a
href=
"javascript:goto_page(760+24)"
>
13.7.2 Pure Resistance 760
</a>
<li><a
href=
"javascript:goto_page(761+24)"
>
13.7.3 Pure Reactance 761
</a>
<li><a
href=
"javascript:goto_page(763+24)"
>
13.7.4 Example: Power in an RC Circuit 763
</a>
</ul>
<li><a
href=
"javascript:goto_page(765+24)"
>
13.8 Summary 765
</a>
</ul>
<li><a
href=
"javascript:goto_page(777+24)"
>
Sinusoidal Steady State: Resonance
</a>
<ul>
<li><a
href=
"javascript:goto_page(777+24)"
>
Parallel RLC, Sinusoidal Response
</a>
<ul>
<li><a
href=
"javascript:goto_page(778+24)"
>
Homogeneous Solution
</a>
<li><a
href=
"javascript:goto_page(780+24)"
>
Particular Solution
</a>
<li><a
href=
"javascript:goto_page(781+24)"
>
Total Solution for the Parallel RLC Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(783+24)"
>
Frequency Response for Resonant Systems
</a>
<ul>
<li><a
href=
"javascript:goto_page(792+24)"
>
The Resonant Region of the Frequency Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(801+24)"
>
Series RLC
</a>
<li><a
href=
"javascript:goto_page(808+24)"
>
The Bode Plot for Resonant Functions *
</a>
<li><a
href=
"javascript:goto_page(808+24)"
>
Filter Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(809+24)"
>
Bandpass Filter
</a>
<li><a
href=
"javascript:goto_page(810+24)"
>
Lowpass Filter
</a>
<li><a
href=
"javascript:goto_page(812+24)"
>
Highpass Filter
</a>
<li><a
href=
"javascript:goto_page(815+24)"
>
Notch Filter
</a>
</ul>
<li><a
href=
"javascript:goto_page(816+24)"
>
Stored Energy in a Resonant Circuit
</a>
<li><a
href=
"javascript:goto_page(821+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(777+24)"
>
14 Sinusoidal Steady State: Resonance 777
</a>
<ul>
<li><a
href=
"javascript:goto_page(777+24)"
>
14.1 Parallel RLC, Sinusoidal Response 777
</a>
<ul>
<li><a
href=
"javascript:goto_page(778+24)"
>
14.1.1 Homogeneous Solution 778
</a>
<li><a
href=
"javascript:goto_page(780+24)"
>
14.1.2 Particular Solution 780
</a>
<li><a
href=
"javascript:goto_page(781+24)"
>
14.1.3 Total Solution for the Parallel RLC Circuit 781
</a>
</ul>
<li><a
href=
"javascript:goto_page(783+24)"
>
14.2 Frequency Response for Resonant Systems 783
</a>
<ul>
<li><a
href=
"javascript:goto_page(792+24)"
>
14.2.1 The Resonant Region of the Frequency Response 792
</a>
</ul>
<li><a
href=
"javascript:goto_page(801+24)"
>
14.3 Series RLC 801
</a>
<li><a
href=
"javascript:goto_page(808+24)"
>
14.4 The Bode Plot for Resonant Functions * 808
</a>
<li><a
href=
"javascript:goto_page(808+24)"
>
14.5 Filter Examples 808
</a>
<ul>
<li><a
href=
"javascript:goto_page(809+24)"
>
14.5.1 Bandpass Filter 809
</a>
<li><a
href=
"javascript:goto_page(810+24)"
>
14.5.2 Lowpass Filter 810
</a>
<li><a
href=
"javascript:goto_page(812+24)"
>
14.5.3 Highpass Filter 812
</a>
<li><a
href=
"javascript:goto_page(815+24)"
>
14.5.4 Notch Filter 815
</a>
</ul>
<li><a
href=
"javascript:goto_page(816+24)"
>
14.6 Stored Energy in a Resonant Circuit 816
</a>
<li><a
href=
"javascript:goto_page(821+24)"
>
14.7 Summary 821
</a>
</ul>
<li><a
href=
"javascript:goto_page(837+24)"
>
The Operational Amplifier Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(837+24)"
>
Introduction
</a>
<ul>
<li><a
href=
"javascript:goto_page(838+24)"
>
Historical Perspective
</a>
</ul>
<li><a
href=
"javascript:goto_page(839+24)"
>
Device Properties of the Operational Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(839+24)"
>
The Op Amp Model
</a>
</ul>
<li><a
href=
"javascript:goto_page(842+24)"
>
Simple Op Amp Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(842+24)"
>
The Non-inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(844+24)"
>
A Second Example: The Inverting Connection
</a>
<li><a
href=
"javascript:goto_page(846+24)"
>
Sensitivity
</a>
<li><a
href=
"javascript:goto_page(847+24)"
>
A Special Case: The Voltage Follower
</a>
<li><a
href=
"javascript:goto_page(848+24)"
>
An Additional Constraint: $v^+ - v^- \simeq 0$
</a>
</ul>
<li><a
href=
"javascript:goto_page(849+24)"
>
Input and Output Resistances
</a>
<ul>
<li><a
href=
"javascript:goto_page(849+24)"
>
Output Resistance, Inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(851+24)"
>
Input Resistance, Inverting Connection
</a>
<li><a
href=
"javascript:goto_page(853+24)"
>
Input and Output R for Non-Inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(855+24)"
>
Generalization on Input Resistance *
</a>
<li><a
href=
"javascript:goto_page(855+24)"
>
Example: Op Amp Current Source
</a>
</ul>
<li><a
href=
"javascript:goto_page(857+24)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(858+24)"
>
Adder
</a>
<li><a
href=
"javascript:goto_page(858+24)"
>
Subtracter
</a>
</ul>
<li><a
href=
"javascript:goto_page(859+24)"
>
Op Amp RC Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(859+24)"
>
Op Amp Integrator
</a>
<li><a
href=
"javascript:goto_page(862+24)"
>
Op Amp Differentiator
</a>
<li><a
href=
"javascript:goto_page(863+24)"
>
An RC Active Filter
</a>
<li><a
href=
"javascript:goto_page(865+24)"
>
The RC Active Filter -- Impedance Analysis
</a>
<li><a
href=
"javascript:goto_page(866+24)"
>
Sallen-Key Filter
</a>
</ul>
<li><a
href=
"javascript:goto_page(866+24)"
>
Op Amp in Saturation
</a>
<ul>
<li><a
href=
"javascript:goto_page(867+24)"
>
Op Amp Integrator in Saturation
</a>
</ul>
<li><a
href=
"javascript:goto_page(869+24)"
>
Positive Feedback
</a>
<ul>
<li><a
href=
"javascript:goto_page(869+24)"
>
RC Oscillator
</a>
</ul>
<li><a
href=
"javascript:goto_page(872+24)"
>
Two-ports*
</a>
<li><a
href=
"javascript:goto_page(873+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(837+24)"
>
15 The Operational Amplifier Abstraction 837
</a>
<ul>
<li><a
href=
"javascript:goto_page(837+24)"
>
15.1 Introduction 837
</a>
<ul>
<li><a
href=
"javascript:goto_page(838+24)"
>
15.1.1 Historical Perspective 838
</a>
</ul>
<li><a
href=
"javascript:goto_page(839+24)"
>
15.2 Device Properties of the Operational Amplifier 839
</a>
<ul>
<li><a
href=
"javascript:goto_page(839+24)"
>
15.2 The Op Amp Model 839
</a>
</ul>
<li><a
href=
"javascript:goto_page(842+24)"
>
15.3 Simple Op Amp Circuits 842
</a>
<ul>
<li><a
href=
"javascript:goto_page(842+24)"
>
15.3.1 The Non-inverting Op Amp 842
</a>
<li><a
href=
"javascript:goto_page(844+24)"
>
15.3.2 A Second Example: The Inverting Connection 844
</a>
<li><a
href=
"javascript:goto_page(846+24)"
>
15.3.3 Sensitivity 846
</a>
<li><a
href=
"javascript:goto_page(847+24)"
>
15.3.4 A Special Case: The Voltage Follower 847
</a>
<li><a
href=
"javascript:goto_page(848+24)"
>
15.3.5 An Additional Constraint: v+ - v- ~ 0 848
</a>
</ul>
<li><a
href=
"javascript:goto_page(849+24)"
>
15.4 Input and Output Resistances 849
</a>
<ul>
<li><a
href=
"javascript:goto_page(849+24)"
>
15.4.1 Output Resistance, Inverting Op Amp 849
</a>
<li><a
href=
"javascript:goto_page(851+24)"
>
15.4.2 Input Resistance, Inverting Connection 851
</a>
<li><a
href=
"javascript:goto_page(853+24)"
>
15.4.3 Input and Output R for Non-Inverting Op Amp 853
</a>
<li><a
href=
"javascript:goto_page(855+24)"
>
15.4.4 Generalization on Input Resistance * 855
</a>
<li><a
href=
"javascript:goto_page(855+24)"
>
15.4.5 Example: Op Amp Current Source 855
</a>
</ul>
<li><a
href=
"javascript:goto_page(857+24)"
>
15.5 Additional Examples 857
</a>
<ul>
<li><a
href=
"javascript:goto_page(858+24)"
>
15.5.1 Adder 858
</a>
<li><a
href=
"javascript:goto_page(858+24)"
>
15.5.2 Subtracter 858
</a>
</ul>
<li><a
href=
"javascript:goto_page(859+24)"
>
15.6 Op Amp RC Circuits 859
</a>
<ul>
<li><a
href=
"javascript:goto_page(859+24)"
>
15.6.1 Op Amp Integrator 859
</a>
<li><a
href=
"javascript:goto_page(862+24)"
>
15.6.2 Op Amp Differentiator 862
</a>
<li><a
href=
"javascript:goto_page(863+24)"
>
15.6.3 An RC Active Filter 863
</a>
<li><a
href=
"javascript:goto_page(865+24)"
>
15.6.4 The RC Active Filter -- Impedance Analysis 865
</a>
<li><a
href=
"javascript:goto_page(866+24)"
>
15.6.5 Sallen-Key Filter 866
</a>
</ul>
<li><a
href=
"javascript:goto_page(866+24)"
>
15.7 Op Amp in Saturation 866
</a>
<ul>
<li><a
href=
"javascript:goto_page(867+24)"
>
15.7.1 Op Amp Integrator in Saturation 867
</a>
</ul>
<li><a
href=
"javascript:goto_page(869+24)"
>
15.8 Positive Feedback 869
</a>
<ul>
<li><a
href=
"javascript:goto_page(869+24)"
>
15.8.1 RC Oscillator 869
</a>
</ul>
<li><a
href=
"javascript:goto_page(872+24)"
>
15.9 Two-ports* 872
</a>
<li><a
href=
"javascript:goto_page(873+24)"
>
15.10 Summary 873
</a>
</ul>
<li><a
href=
"javascript:goto_page(905+24)"
>
Diodes
</a>
<ul>
<li><a
href=
"javascript:goto_page(905+24)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(905+24)"
>
Semiconductor Diode Characteristics
</a>
<li><a
href=
"javascript:goto_page(908+24)"
>
Analysis of Diode Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(908+24)"
>
Method of Assumed States
</a>
</ul>
<li><a
href=
"javascript:goto_page(912+24)"
>
Nonlinear Analysis with RL and RC
</a>
<ul>
<li><a
href=
"javascript:goto_page(912+24)"
>
Peak Detector
</a>
<li><a
href=
"javascript:goto_page(915+24)"
>
Example: Clamping Circuit
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
A Switched Power Supply Using a Diode
</a>
</ul>
<li><a
href=
"javascript:goto_page(918+24)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(918+24)"
>
Piecewise Linear Example: Clipping Circuit
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
Exponentiation Circuit
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
Piecewise Linear Example: Limiter
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
Example: Full-Wave Diode Bridge
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
Incremental Example: Zener Diode Regulator
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
Incremental Example: Diode Attenuator
</a>
</ul>
<li><a
href=
"javascript:goto_page(919+24)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(905+24)"
>
16 Diodes 905
</a>
<ul>
<li><a
href=
"javascript:goto_page(905+24)"
>
16.1 Introduction 905
</a>
<li><a
href=
"javascript:goto_page(905+24)"
>
16.2 Semiconductor Diode Characteristics 905
</a>
<li><a
href=
"javascript:goto_page(908+24)"
>
16.3 Analysis of Diode Circuits 908
</a>
<ul>
<li><a
href=
"javascript:goto_page(908+24)"
>
16.3.1 Method of Assumed States 908
</a>
</ul>
<li><a
href=
"javascript:goto_page(912+24)"
>
16.4 Nonlinear Analysis with RL and RC 912
</a>
<ul>
<li><a
href=
"javascript:goto_page(912+24)"
>
16.4.1 Peak Detector 912
</a>
<li><a
href=
"javascript:goto_page(915+24)"
>
16.4.2 Example: Clamping Circuit 915
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.4.3 A Switched Power Supply Using a Diode 918
</a>
</ul>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5 Additional Examples 918
</a>
<ul>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.1 Piecewise Linear Example: Clipping Circuit 918
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.2 Exponentiation Circuit 918
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.3 Piecewise Linear Example: Limiter 918
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.4 Example: Full-Wave Diode Bridge 918
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.5 Incremental Example: Zener Diode Regulator 918
</a>
<li><a
href=
"javascript:goto_page(918+24)"
>
16.5.6 Incremental Example: Diode Attenuator 918
</a>
</ul>
<li><a
href=
"javascript:goto_page(919+24)"
>
16.6 Summary 919
</a>
</ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
Maxwell's Equations and the LMD
</a>
<ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
The Lumped Matter Discipline
</a>
<ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
The First Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(930+24)"
>
The Second Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(932+24)"
>
The Third Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(933+24)"
>
The Lumped Matter Discipline Applied to Circuits
</a>
</ul>
<li><a
href=
"javascript:goto_page(934+24)"
>
Deriving Kirchhoff's Laws
</a>
<li><a
href=
"javascript:goto_page(936+24)"
>
Deriving the Resistance of a Piece of Material
</a>
</ul>
<li><a
href=
"javascript:goto_page(941+24)"
>
Trigonometric Functions \
&
Identities
</a>
<ul>
<li><a
href=
"javascript:goto_page(941+24)"
>
Negative Arguments
</a>
<li><a
href=
"javascript:goto_page(942+24)"
>
Phase-Shifted Arguments
</a>
<li><a
href=
"javascript:goto_page(942+24)"
>
Sum and Difference Arguments
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
Products
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
Half-Angle \
&
Twice-Angle Arguments
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
Squares
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
Miscellaneous
</a>
<li><a
href=
"javascript:goto_page(944+24)"
>
Taylor Series Expansions
</a>
<li><a
href=
"javascript:goto_page(944+24)"
>
Relations to $e^j\theta}$
</a>
</ul>
<li><a
href=
"javascript:goto_page(947+24)"
>
Complex Numbers
</a>
<ul>
<li><a
href=
"javascript:goto_page(947+24)"
>
Magnitude and Phase
</a>
<li><a
href=
"javascript:goto_page(948+24)"
>
Polar Representation
</a>
<li><a
href=
"javascript:goto_page(949+24)"
>
Addition and Subtraction
</a>
<li><a
href=
"javascript:goto_page(949+24)"
>
Multiplication and Division
</a>
<li><a
href=
"javascript:goto_page(950+24)"
>
Complex Conjugate
</a>
<li><a
href=
"javascript:goto_page(951+24)"
>
Properties of $e^j\theta}$
</a>
<li><a
href=
"javascript:goto_page(951+24)"
>
Rotation
</a>
<li><a
href=
"javascript:goto_page(952+24)"
>
Complex Functions of Time
</a>
<li><a
href=
"javascript:goto_page(952+24)"
>
Numerical Examples
</a>
</ul>
<li><a
href=
"javascript:goto_page(957+24)"
>
Solving Simultaneous Linear Equations
</a>
</ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
A1 Maxwell's Equations and the LMD 927
</a>
<ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
A.1 The Lumped Matter Discipline 927
</a>
<ul>
<li><a
href=
"javascript:goto_page(927+24)"
>
A.1.1 The First Constraint of the Lumped Matter Discipline 927
</a>
<li><a
href=
"javascript:goto_page(930+24)"
>
A.1.2 The Second Constraint of the Lumped Matter Discipline 930
</a>
<li><a
href=
"javascript:goto_page(932+24)"
>
A.1.3 The Third Constraint of the Lumped Matter Discipline 932
</a>
<li><a
href=
"javascript:goto_page(933+24)"
>
A.1.4 The Lumped Matter Discipline Applied to Circuits 933
</a>
</ul>
<li><a
href=
"javascript:goto_page(934+24)"
>
A.2 Deriving Kirchhoff's Laws 934
</a>
<li><a
href=
"javascript:goto_page(936+24)"
>
A.3 Deriving the Resistance of a Piece of Material 936
</a>
</ul>
<li><a
href=
"javascript:goto_page(941+24)"
>
B Trigonometric Functions
&
Identities 941
</a>
<ul>
<li><a
href=
"javascript:goto_page(941+24)"
>
B.1 Negative Arguments 941
</a>
<li><a
href=
"javascript:goto_page(942+24)"
>
B.2 Phase-Shifted Arguments 942
</a>
<li><a
href=
"javascript:goto_page(942+24)"
>
B.3 Sum and Difference Arguments 942
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
B.4 Products 943
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
B.5 Half-Angle
&
Twice-Angle Arguments 943
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
B.6 Squares 943
</a>
<li><a
href=
"javascript:goto_page(943+24)"
>
B.7 Miscellaneous 943
</a>
<li><a
href=
"javascript:goto_page(944+24)"
>
B.8 Taylor Series Expansions 944
</a>
<li><a
href=
"javascript:goto_page(944+24)"
>
B.9 Relations to e^j\theta 944
</a>
</ul>
<li><a
href=
"javascript:goto_page(947+24)"
>
C Complex Numbers 947
</a>
<ul>
<li><a
href=
"javascript:goto_page(947+24)"
>
C.1 Magnitude and Phase 947
</a>
<li><a
href=
"javascript:goto_page(948+24)"
>
C.2 Polar Representation 948
</a>
<li><a
href=
"javascript:goto_page(949+24)"
>
C.3 Addition and Subtraction 949
</a>
<li><a
href=
"javascript:goto_page(949+24)"
>
C.4 Multiplication and Division 949
</a>
<li><a
href=
"javascript:goto_page(950+24)"
>
C.5 Complex Conjugate 950
</a>
<li><a
href=
"javascript:goto_page(951+24)"
>
C.6 Properties of e^j\theta 951
</a>
<li><a
href=
"javascript:goto_page(951+24)"
>
C.7 Rotation 951
</a>
<li><a
href=
"javascript:goto_page(952+24)"
>
C.8 Complex Functions of Time 952
</a>
<li><a
href=
"javascript:goto_page(952+24)"
>
C.9 Numerical Examples 952
</a>
</ul>
<li><a
href=
"javascript:goto_page(957+24)"
>
D Solving Simultaneous Linear Equations 957
</a>
<li><a
href=
"javascript:goto_page(959+24)"
>
Answers to Selected Problems 959
</a>
<li><a
href=
"javascript:goto_page(971+24)"
>
Figure Acknowledgments 971
</a>
<li><a
href=
"javascript:goto_page(973+24)"
>
Index 973
</a>
profile_graphs.js
View file @
c7e72c28
...
...
@@ -127,7 +127,7 @@ $(function () {
var
plot
=
$
.
plot
(
$grade_detail_graph
,
series
,
options
);
var
o
=
plot
.
pointOffset
({
x
:
$
{
overviewBarX
}
,
y
:
$
{
totalScore
}});
$grade_detail_graph
.
append
(
'<div style="position:absolute;left:'
+
(
o
.
left
-
12
)
+
'px;top:'
+
(
o
.
top
-
20
)
+
'px">${"{
:.0%}".format(
totalScore)}</div>'
);
$grade_detail_graph
.
append
(
'<div style="position:absolute;left:'
+
(
o
.
left
-
12
)
+
'px;top:'
+
(
o
.
top
-
20
)
+
'px">${"{
totalscore:.0%}".format(totalscore=
totalScore)}</div>'
);
// //Rotate the x-axis labels
// var rotateValue = "rotate(-60deg)";
...
...
staticbook.html
View file @
c7e72c28
...
...
@@ -16,19 +16,19 @@ function goto_page(n) {
if
(
n
<
10
)
{
prefix
=
"00"
;
}
$
(
"#bookpage"
).
attr
(
"src"
,
"${ settings.BOOK_URL }p"
+
prefix
+
n
+
".
jp
g"
);
$
(
"#bookpage"
).
attr
(
"src"
,
"${ settings.BOOK_URL }p"
+
prefix
+
n
+
".
pn
g"
);
};
function
prev_page
()
{
var
newpage
=
page
-
1
;
if
(
newpage
<
1
)
newpage
=
1
;
if
(
newpage
<
0
)
newpage
=
0
;
goto_page
(
newpage
);
log_event
(
"book"
,
{
"type"
:
"prevpage"
,
"new"
:
page
});
}
function
next_page
()
{
var
newpage
=
page
+
1
;
if
(
newpage
>
1
764
)
newpage
=
1764
;
if
(
newpage
>
1
008
)
newpage
=
1008
;
goto_page
(
newpage
);
log_event
(
"book"
,
{
"type"
:
"nextpage"
,
"new"
:
page
});
}
...
...
@@ -56,7 +56,7 @@ function next_page() {
</ul>
</nav>
<img
id=
"bookpage"
src=
"${ settings.BOOK_URL }p${ "
%
03i
"%(
page
)
}.
jp
g
"
>
<img
id=
"bookpage"
src=
"${ settings.BOOK_URL }p${ "
%
03i
"%(
page
)
}.
pn
g
"
>
</section>
</section>
</div>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment