Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
edx-platform
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
edx-platform
Commits
bffd9ac3
Commit
bffd9ac3
authored
Sep 10, 2012
by
ichuang
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
center histogram bars; pep8
parent
1f07bb04
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
66 additions
and
54 deletions
+66
-54
lms/djangoapps/psychometrics/psychoanalyze.py
+66
-54
No files found.
lms/djangoapps/psychometrics/psychoanalyze.py
View file @
bffd9ac3
#
#
# File: psychometrics/psychoanalyze.py
# File: psychometrics/psychoanalyze.py
#
#
# generate pyschometrics plots from PsychometricData
# generate pyschometrics plots from PsychometricData
from
__future__
import
division
from
__future__
import
division
...
@@ -19,98 +19,108 @@ from xmodule.modulestore import Location
...
@@ -19,98 +19,108 @@ from xmodule.modulestore import Location
log
=
logging
.
getLogger
(
"mitx.psychometrics"
)
log
=
logging
.
getLogger
(
"mitx.psychometrics"
)
#db = "ocwtutor"
# for debugging
#db = "ocwtutor"
# for debugging
#db = "default"
#db = "default"
db
=
getattr
(
settings
,
'DATABASE_FOR_PSYCHOMETRICS'
,
'default'
)
db
=
getattr
(
settings
,
'DATABASE_FOR_PSYCHOMETRICS'
,
'default'
)
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# fit functions
# fit functions
def
func_2pl
(
x
,
a
,
b
):
def
func_2pl
(
x
,
a
,
b
):
"""
"""
2-parameter logistic function
2-parameter logistic function
"""
"""
D
=
1.7
D
=
1.7
edax
=
np
.
exp
(
D
*
a
*
(
x
-
b
))
edax
=
np
.
exp
(
D
*
a
*
(
x
-
b
))
return
edax
/
(
1
+
edax
)
return
edax
/
(
1
+
edax
)
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# statistics class
# statistics class
class
StatVar
(
object
):
class
StatVar
(
object
):
"""
"""
Simple statistics on floating point numbers: avg, sdv, var, min, max
Simple statistics on floating point numbers: avg, sdv, var, min, max
"""
"""
def
__init__
(
self
,
unit
=
1
):
def
__init__
(
self
,
unit
=
1
):
self
.
sum
=
0
self
.
sum
=
0
self
.
sum2
=
0
self
.
sum2
=
0
self
.
cnt
=
0
self
.
cnt
=
0
self
.
unit
=
unit
self
.
unit
=
unit
self
.
min
=
None
self
.
min
=
None
self
.
max
=
None
self
.
max
=
None
def
add
(
self
,
x
):
def
add
(
self
,
x
):
if
x
is
None
:
if
x
is
None
:
return
return
if
self
.
min
is
None
:
if
self
.
min
is
None
:
self
.
min
=
x
self
.
min
=
x
else
:
else
:
if
x
<
self
.
min
:
if
x
<
self
.
min
:
self
.
min
=
x
self
.
min
=
x
if
self
.
max
is
None
:
if
self
.
max
is
None
:
self
.
max
=
x
self
.
max
=
x
else
:
else
:
if
x
>
self
.
max
:
if
x
>
self
.
max
:
self
.
max
=
x
self
.
max
=
x
self
.
sum
+=
x
self
.
sum
+=
x
self
.
sum2
+=
x
**
2
self
.
sum2
+=
x
**
2
self
.
cnt
+=
1
self
.
cnt
+=
1
def
avg
(
self
):
def
avg
(
self
):
if
self
.
cnt
is
None
:
if
self
.
cnt
is
None
:
return
0
return
0
return
self
.
sum
/
1.0
/
self
.
cnt
/
self
.
unit
return
self
.
sum
/
1.0
/
self
.
cnt
/
self
.
unit
def
var
(
self
):
def
var
(
self
):
if
self
.
cnt
is
None
:
if
self
.
cnt
is
None
:
return
0
return
0
return
(
self
.
sum2
/
1.0
/
self
.
cnt
/
(
self
.
unit
**
2
))
-
(
self
.
avg
()
**
2
)
return
(
self
.
sum2
/
1.0
/
self
.
cnt
/
(
self
.
unit
**
2
))
-
(
self
.
avg
()
**
2
)
def
sdv
(
self
):
def
sdv
(
self
):
v
=
self
.
var
()
v
=
self
.
var
()
if
v
>
0
:
if
v
>
0
:
return
math
.
sqrt
(
v
)
return
math
.
sqrt
(
v
)
else
:
else
:
return
0
return
0
def
__str__
(
self
):
def
__str__
(
self
):
return
'cnt=
%
d, avg=
%
f, sdv=
%
f'
%
(
self
.
cnt
,
self
.
avg
(),
self
.
sdv
())
return
'cnt=
%
d, avg=
%
f, sdv=
%
f'
%
(
self
.
cnt
,
self
.
avg
(),
self
.
sdv
())
def
__add__
(
self
,
x
):
def
__add__
(
self
,
x
):
self
.
add
(
x
)
self
.
add
(
x
)
return
self
return
self
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# histogram generator
# histogram generator
def
make_histogram
(
ydata
,
bins
=
None
):
def
make_histogram
(
ydata
,
bins
=
None
):
'''
'''
Generate histogram of ydata using bins provided, or by default bins
Generate histogram of ydata using bins provided, or by default bins
from 0 to 100 by 10. bins should be ordered in increasing order.
from 0 to 100 by 10. bins should be ordered in increasing order.
returns dict with keys being bins, and values being counts.
returns dict with keys being bins, and values being counts.
special: hist['bins'] = bins
special: hist['bins'] = bins
'''
'''
if
bins
is
None
:
if
bins
is
None
:
bins
=
range
(
0
,
100
,
10
)
bins
=
range
(
0
,
100
,
10
)
nbins
=
len
(
bins
)
nbins
=
len
(
bins
)
hist
=
dict
(
zip
(
bins
,[
0
]
*
nbins
))
hist
=
dict
(
zip
(
bins
,
[
0
]
*
nbins
))
for
y
in
ydata
:
for
y
in
ydata
:
for
b
in
bins
[::
-
1
]:
# in reverse order
for
b
in
bins
[::
-
1
]:
# in reverse order
if
y
>
b
:
if
y
>
b
:
hist
[
b
]
+=
1
hist
[
b
]
+=
1
break
break
# hist['bins'] = bins
# hist['bins'] = bins
return
hist
return
hist
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
def
problems_with_psychometric_data
(
course_id
):
def
problems_with_psychometric_data
(
course_id
):
'''
'''
Return dict of {problems (location urls): count} for which psychometric data is available.
Return dict of {problems (location urls): count} for which psychometric data is available.
...
@@ -118,36 +128,37 @@ def problems_with_psychometric_data(course_id):
...
@@ -118,36 +128,37 @@ def problems_with_psychometric_data(course_id):
'''
'''
pmdset
=
PsychometricData
.
objects
.
using
(
db
)
.
filter
(
studentmodule__course_id
=
course_id
)
pmdset
=
PsychometricData
.
objects
.
using
(
db
)
.
filter
(
studentmodule__course_id
=
course_id
)
plist
=
[
p
[
'studentmodule__module_state_key'
]
for
p
in
pmdset
.
values
(
'studentmodule__module_state_key'
)
.
distinct
()]
plist
=
[
p
[
'studentmodule__module_state_key'
]
for
p
in
pmdset
.
values
(
'studentmodule__module_state_key'
)
.
distinct
()]
problems
=
dict
(
(
p
,
pmdset
.
filter
(
studentmodule__module_state_key
=
p
)
.
count
())
for
p
in
plist
)
problems
=
dict
(
(
p
,
pmdset
.
filter
(
studentmodule__module_state_key
=
p
)
.
count
())
for
p
in
plist
)
return
problems
return
problems
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
def
generate_plots_for_problem
(
problem
):
def
generate_plots_for_problem
(
problem
):
pmdset
=
PsychometricData
.
objects
.
using
(
db
)
.
filter
(
studentmodule__module_state_key
=
problem
)
pmdset
=
PsychometricData
.
objects
.
using
(
db
)
.
filter
(
studentmodule__module_state_key
=
problem
)
nstudents
=
pmdset
.
count
()
nstudents
=
pmdset
.
count
()
msg
=
""
msg
=
""
plots
=
[]
plots
=
[]
if
nstudents
<
2
:
if
nstudents
<
2
:
msg
+=
"
%
s nstudents=
%
d --> skipping, too few"
%
(
problem
,
nstudents
)
msg
+=
"
%
s nstudents=
%
d --> skipping, too few"
%
(
problem
,
nstudents
)
return
msg
,
plots
return
msg
,
plots
max_grade
=
pmdset
[
0
]
.
studentmodule
.
max_grade
max_grade
=
pmdset
[
0
]
.
studentmodule
.
max_grade
agdat
=
pmdset
.
aggregate
(
Sum
(
'attempts'
),
Max
(
'attempts'
))
agdat
=
pmdset
.
aggregate
(
Sum
(
'attempts'
),
Max
(
'attempts'
))
max_attempts
=
agdat
[
'attempts__max'
]
max_attempts
=
agdat
[
'attempts__max'
]
total_attempts
=
agdat
[
'attempts__sum'
]
# not used yet
total_attempts
=
agdat
[
'attempts__sum'
]
# not used yet
msg
+=
"max attempts =
%
d"
%
max_attempts
msg
+=
"max attempts =
%
d"
%
max_attempts
xdat
=
range
(
1
,
max_attempts
+
1
)
xdat
=
range
(
1
,
max_attempts
+
1
)
dataset
=
{
'xdat'
:
xdat
}
dataset
=
{
'xdat'
:
xdat
}
# compute grade statistics
# compute grade statistics
grades
=
[
pmd
.
studentmodule
.
grade
for
pmd
in
pmdset
]
grades
=
[
pmd
.
studentmodule
.
grade
for
pmd
in
pmdset
]
gsv
=
StatVar
()
gsv
=
StatVar
()
for
g
in
grades
:
for
g
in
grades
:
gsv
+=
g
gsv
+=
g
...
@@ -171,14 +182,14 @@ def generate_plots_for_problem(problem):
...
@@ -171,14 +182,14 @@ def generate_plots_for_problem(problem):
max_grade
=
gsv
.
max
max_grade
=
gsv
.
max
if
max_grade
>
1
:
if
max_grade
>
1
:
ghist
=
make_histogram
(
grades
,
np
.
linspace
(
0
,
max_grade
,
max_grade
+
1
))
ghist
=
make_histogram
(
grades
,
np
.
linspace
(
0
,
max_grade
,
max_grade
+
1
))
ghist_json
=
json
.
dumps
(
ghist
.
items
())
ghist_json
=
json
.
dumps
(
ghist
.
items
())
plot
=
{
'title'
:
"Grade histogram for
%
s"
%
problem
,
plot
=
{
'title'
:
"Grade histogram for
%
s"
%
problem
,
'id'
:
'histogram'
,
'id'
:
'histogram'
,
'info'
:
''
,
'info'
:
''
,
'data'
:
"var dhist =
%
s;
\n
"
%
ghist_json
,
'data'
:
"var dhist =
%
s;
\n
"
%
ghist_json
,
'cmd'
:
"[ {data: dhist, bars: { show: true }} ],
%
s"
%
axisopts
,
'cmd'
:
'[ {data: dhist, bars: { show: true, align: "center" }} ],
%
s'
%
axisopts
,
}
}
plots
.
append
(
plot
)
plots
.
append
(
plot
)
else
:
else
:
...
@@ -186,27 +197,27 @@ def generate_plots_for_problem(problem):
...
@@ -186,27 +197,27 @@ def generate_plots_for_problem(problem):
# histogram of time differences between checks
# histogram of time differences between checks
# Warning: this is inefficient - doesn't scale to large numbers of students
# Warning: this is inefficient - doesn't scale to large numbers of students
dtset
=
[]
# time differences in minutes
dtset
=
[]
# time differences in minutes
dtsv
=
StatVar
()
dtsv
=
StatVar
()
for
pmd
in
pmdset
:
for
pmd
in
pmdset
:
try
:
try
:
checktimes
=
eval
(
pmd
.
checktimes
)
# update log of attempt timestamps
checktimes
=
eval
(
pmd
.
checktimes
)
# update log of attempt timestamps
except
:
except
:
continue
continue
if
len
(
checktimes
)
<
2
:
if
len
(
checktimes
)
<
2
:
continue
continue
ct0
=
checktimes
[
0
]
ct0
=
checktimes
[
0
]
for
ct
in
checktimes
[
1
:]:
for
ct
in
checktimes
[
1
:]:
dt
=
(
ct
-
ct0
)
.
total_seconds
()
/
60.0
dt
=
(
ct
-
ct0
)
.
total_seconds
()
/
60.0
if
dt
<
20
:
# ignore if dt too long
if
dt
<
20
:
# ignore if dt too long
dtset
.
append
(
dt
)
dtset
.
append
(
dt
)
dtsv
+=
dt
dtsv
+=
dt
ct0
=
ct
ct0
=
ct
if
dtsv
.
cnt
>
2
:
if
dtsv
.
cnt
>
2
:
msg
+=
"<br/><p><font color='brown'>Time differences between checks:
%
s</font></p>"
%
dtsv
msg
+=
"<br/><p><font color='brown'>Time differences between checks:
%
s</font></p>"
%
dtsv
bins
=
np
.
linspace
(
0
,
1.5
*
dtsv
.
sdv
(),
30
)
bins
=
np
.
linspace
(
0
,
1.5
*
dtsv
.
sdv
(),
30
)
dbar
=
bins
[
1
]
-
bins
[
0
]
dbar
=
bins
[
1
]
-
bins
[
0
]
thist
=
make_histogram
(
dtset
,
bins
)
thist
=
make_histogram
(
dtset
,
bins
)
thist_json
=
json
.
dumps
(
sorted
(
thist
.
items
(),
key
=
lambda
(
x
):
x
[
0
]))
thist_json
=
json
.
dumps
(
sorted
(
thist
.
items
(),
key
=
lambda
(
x
):
x
[
0
]))
axisopts
=
"""{ xaxes: [{ axisLabel: 'Time (min)'}], yaxes: [{position: 'left',axisLabel: 'Count'}]}"""
axisopts
=
"""{ xaxes: [{ axisLabel: 'Time (min)'}], yaxes: [{position: 'left',axisLabel: 'Count'}]}"""
...
@@ -215,33 +226,33 @@ def generate_plots_for_problem(problem):
...
@@ -215,33 +226,33 @@ def generate_plots_for_problem(problem):
'id'
:
'thistogram'
,
'id'
:
'thistogram'
,
'info'
:
''
,
'info'
:
''
,
'data'
:
"var thist =
%
s;
\n
"
%
thist_json
,
'data'
:
"var thist =
%
s;
\n
"
%
thist_json
,
'cmd'
:
"[ {data: thist, bars: { show: true, barWidth:
%
f }} ],
%
s"
%
(
dbar
,
axisopts
),
'cmd'
:
'[ {data: thist, bars: { show: true, align: "center", barWidth:
%
f }} ],
%
s'
%
(
dbar
,
axisopts
),
}
}
plots
.
append
(
plot
)
plots
.
append
(
plot
)
# one IRT plot curve for each grade received (TODO: this assumes integer grades)
# one IRT plot curve for each grade received (TODO: this assumes integer grades)
for
grade
in
range
(
1
,
int
(
max_grade
)
+
1
):
for
grade
in
range
(
1
,
int
(
max_grade
)
+
1
):
yset
=
{}
yset
=
{}
gset
=
pmdset
.
filter
(
studentmodule__grade
=
grade
)
gset
=
pmdset
.
filter
(
studentmodule__grade
=
grade
)
ngset
=
gset
.
count
()
ngset
=
gset
.
count
()
if
ngset
==
0
:
if
ngset
==
0
:
continue
continue
ydat
=
[]
ydat
=
[]
ylast
=
0
ylast
=
0
for
x
in
xdat
:
for
x
in
xdat
:
y
=
gset
.
filter
(
attempts
=
x
)
.
count
()
/
ngset
y
=
gset
.
filter
(
attempts
=
x
)
.
count
()
/
ngset
ydat
.
append
(
y
+
ylast
)
ydat
.
append
(
y
+
ylast
)
ylast
=
y
+
ylast
ylast
=
y
+
ylast
yset
[
'ydat'
]
=
ydat
yset
[
'ydat'
]
=
ydat
if
len
(
ydat
)
>
3
:
# try to fit to logistic function if enough data points
if
len
(
ydat
)
>
3
:
# try to fit to logistic function if enough data points
cfp
=
curve_fit
(
func_2pl
,
xdat
,
ydat
,
[
1.0
,
max_attempts
/
2.0
])
cfp
=
curve_fit
(
func_2pl
,
xdat
,
ydat
,
[
1.0
,
max_attempts
/
2.0
])
yset
[
'fitparam'
]
=
cfp
yset
[
'fitparam'
]
=
cfp
yset
[
'fitpts'
]
=
func_2pl
(
np
.
array
(
xdat
),
*
cfp
[
0
])
yset
[
'fitpts'
]
=
func_2pl
(
np
.
array
(
xdat
),
*
cfp
[
0
])
yset
[
'fiterr'
]
=
[
yd
-
yf
for
(
yd
,
yf
)
in
zip
(
ydat
,
yset
[
'fitpts'
])]
yset
[
'fiterr'
]
=
[
yd
-
yf
for
(
yd
,
yf
)
in
zip
(
ydat
,
yset
[
'fitpts'
])]
fitx
=
np
.
linspace
(
xdat
[
0
],
xdat
[
-
1
],
100
)
fitx
=
np
.
linspace
(
xdat
[
0
],
xdat
[
-
1
],
100
)
yset
[
'fitx'
]
=
fitx
yset
[
'fitx'
]
=
fitx
yset
[
'fity'
]
=
func_2pl
(
np
.
array
(
fitx
),
*
cfp
[
0
])
yset
[
'fity'
]
=
func_2pl
(
np
.
array
(
fitx
),
*
cfp
[
0
])
dataset
[
'grade_
%
d'
%
grade
]
=
yset
dataset
[
'grade_
%
d'
%
grade
]
=
yset
...
@@ -257,27 +268,27 @@ def generate_plots_for_problem(problem):
...
@@ -257,27 +268,27 @@ def generate_plots_for_problem(problem):
}"""
}"""
# generate points for flot plot
# generate points for flot plot
for
grade
in
range
(
1
,
int
(
max_grade
)
+
1
):
for
grade
in
range
(
1
,
int
(
max_grade
)
+
1
):
jsdata
=
""
jsdata
=
""
jsplots
=
[]
jsplots
=
[]
gkey
=
'grade_
%
d'
%
grade
gkey
=
'grade_
%
d'
%
grade
if
gkey
in
dataset
:
if
gkey
in
dataset
:
yset
=
dataset
[
gkey
]
yset
=
dataset
[
gkey
]
jsdata
+=
"var d
%
d =
%
s;
\n
"
%
(
grade
,
json
.
dumps
(
zip
(
xdat
,
yset
[
'ydat'
])))
jsdata
+=
"var d
%
d =
%
s;
\n
"
%
(
grade
,
json
.
dumps
(
zip
(
xdat
,
yset
[
'ydat'
])))
jsplots
.
append
(
'{ data: d
%
d, lines: { show: false }, points: { show: true}, color: "red" }'
%
grade
)
jsplots
.
append
(
'{ data: d
%
d, lines: { show: false }, points: { show: true}, color: "red" }'
%
grade
)
if
'fitpts'
in
yset
:
if
'fitpts'
in
yset
:
jsdata
+=
'var fit =
%
s;
\n
'
%
(
json
.
dumps
(
zip
(
yset
[
'fitx'
],
yset
[
'fity'
])))
jsdata
+=
'var fit =
%
s;
\n
'
%
(
json
.
dumps
(
zip
(
yset
[
'fitx'
],
yset
[
'fity'
])))
jsplots
.
append
(
'{ data: fit, lines: { show: true }, color: "blue" }'
)
jsplots
.
append
(
'{ data: fit, lines: { show: true }, color: "blue" }'
)
(
a
,
b
)
=
yset
[
'fitparam'
][
0
]
(
a
,
b
)
=
yset
[
'fitparam'
][
0
]
irtinfo
=
"(2PL: D=1.7, a=
%6.3
f, b=
%6.3
f)"
%
(
a
,
b
)
irtinfo
=
"(2PL: D=1.7, a=
%6.3
f, b=
%6.3
f)"
%
(
a
,
b
)
else
:
else
:
irtinfo
=
""
irtinfo
=
""
plots
.
append
({
'title'
:
'IRT Plot for grade=
%
s
%
s'
%
(
grade
,
irtinfo
),
plots
.
append
({
'title'
:
'IRT Plot for grade=
%
s
%
s'
%
(
grade
,
irtinfo
),
'id'
:
"irt
%
s"
%
grade
,
'id'
:
"irt
%
s"
%
grade
,
'info'
:
''
,
'info'
:
''
,
'data'
:
jsdata
,
'data'
:
jsdata
,
'cmd'
:
'[
%
s],
%
s'
%
(
','
.
join
(
jsplots
),
axisopts
),
'cmd'
:
'[
%
s],
%
s'
%
(
','
.
join
(
jsplots
),
axisopts
),
})
})
#log.debug('plots = %s' % plots)
#log.debug('plots = %s' % plots)
...
@@ -285,6 +296,7 @@ def generate_plots_for_problem(problem):
...
@@ -285,6 +296,7 @@ def generate_plots_for_problem(problem):
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
def
make_psychometrics_data_update_handler
(
studentmodule
):
def
make_psychometrics_data_update_handler
(
studentmodule
):
"""
"""
Construct and return a procedure which may be called to update
Construct and return a procedure which may be called to update
...
@@ -307,13 +319,13 @@ def make_psychometrics_data_update_handler(studentmodule):
...
@@ -307,13 +319,13 @@ def make_psychometrics_data_update_handler(studentmodule):
state
=
json
.
loads
(
sm
.
state
)
state
=
json
.
loads
(
sm
.
state
)
done
=
state
[
'done'
]
done
=
state
[
'done'
]
except
:
except
:
log
.
exception
(
"Oops, failed to eval state for
%
s (state=
%
s)"
%
(
sm
,
sm
.
state
))
log
.
exception
(
"Oops, failed to eval state for
%
s (state=
%
s)"
%
(
sm
,
sm
.
state
))
return
return
pmd
.
done
=
done
pmd
.
done
=
done
pmd
.
attempts
=
state
[
'attempts'
]
pmd
.
attempts
=
state
[
'attempts'
]
try
:
try
:
checktimes
=
eval
(
pmd
.
checktimes
)
# update log of attempt timestamps
checktimes
=
eval
(
pmd
.
checktimes
)
# update log of attempt timestamps
except
:
except
:
checktimes
=
[]
checktimes
=
[]
checktimes
.
append
(
datetime
.
datetime
.
now
())
checktimes
.
append
(
datetime
.
datetime
.
now
())
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment