Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
edx-platform
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
edx-platform
Commits
bd657f5d
Commit
bd657f5d
authored
Dec 29, 2011
by
Piotr Mitros
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Book TOC works
parent
c99ff280
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
338 additions
and
21 deletions
+338
-21
book_toc.html
+337
-0
staticbook.html
+1
-21
No files found.
book_toc.html
0 → 100644
View file @
bd657f5d
<li><a
href=
"javascript:goto_page(1)"
>
The Circuit Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(2)"
>
The Power of Abstraction
</a>
<li><a
href=
"javascript:goto_page(3)"
>
The Lumped Circuit Abstraction
</a>
<li><a
href=
"javascript:goto_page(4)"
>
The Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(5)"
>
Limitations of the Lumped Circuit Abstraction
</a>
<li><a
href=
"javascript:goto_page(6)"
>
Practical Two-Terminal Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(7)"
>
Batteries
</a>
<li><a
href=
"javascript:goto_page(8)"
>
Linear Resistors
</a>
<li><a
href=
"javascript:goto_page(9)"
>
Associated Variables Convention
</a>
</ul>
<li><a
href=
"javascript:goto_page(10)"
>
Ideal Two-Terminal Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(11)"
>
Ideal Voltage Sources, Wires and Resistors
</a>
<li><a
href=
"javascript:goto_page(12)"
>
Element Laws
</a>
<li><a
href=
"javascript:goto_page(13)"
>
The Current Source
</a>
</ul>
<li><a
href=
"javascript:goto_page(14)"
>
Modeling Physical Elements
</a>
<li><a
href=
"javascript:goto_page(15)"
>
Signal Representation
</a>
<ul>
<li><a
href=
"javascript:goto_page(16)"
>
Analog Signals
</a>
<li><a
href=
"javascript:goto_page(17)"
>
Digital Signals
</a>
</ul>
<li><a
href=
"javascript:goto_page(18)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(19)"
>
Resistive Networks
</a>
<ul>
<li><a
href=
"javascript:goto_page(20)"
>
Terminology
</a>
<li><a
href=
"javascript:goto_page(21)"
>
Kirchhoff's Laws
</a>
<ul>
<li><a
href=
"javascript:goto_page(22)"
>
KCL
</a>
<li><a
href=
"javascript:goto_page(23)"
>
KVL
</a>
</ul>
<li><a
href=
"javascript:goto_page(24)"
>
Circuit Analysis: Basic Method
</a>
<ul>
<li><a
href=
"javascript:goto_page(25)"
>
Single-Resistor Circuits
</a>
<li><a
href=
"javascript:goto_page(26)"
>
Quick Intuitive Analysis of Single-Resistor Circuits
</a>
<li><a
href=
"javascript:goto_page(27)"
>
Energy Conservation
</a>
<li><a
href=
"javascript:goto_page(28)"
>
Voltage and Current Dividers
</a>
<li><a
href=
"javascript:goto_page(29)"
>
Voltage Dividers
</a>
<li><a
href=
"javascript:goto_page(30)"
>
Resistors in Series
</a>
<li><a
href=
"javascript:goto_page(31)"
>
Current Dividers
</a>
<li><a
href=
"javascript:goto_page(32)"
>
Resistors in Parallel
</a>
<li><a
href=
"javascript:goto_page(33)"
>
A More Complex Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(34)"
>
Intuitive Method of Circuit Analysis
</a>
<li><a
href=
"javascript:goto_page(35)"
>
More Examples
</a>
<li><a
href=
"javascript:goto_page(36)"
>
Dependent Sources and the Control Concept
</a>
<ul>
<li><a
href=
"javascript:goto_page(37)"
>
Circuits with Dependent Sources
</a>
</ul>
<li><a
href=
"javascript:goto_page(38)"
>
A Formulation Suitable for a Computer Solution *
</a>
<li><a
href=
"javascript:goto_page(39)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(40)"
>
Network Theorems
</a>
<ul>
<li><a
href=
"javascript:goto_page(41)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(42)"
>
The Node Voltage
</a>
<li><a
href=
"javascript:goto_page(43)"
>
The Node Method
</a>
<ul>
<li><a
href=
"javascript:goto_page(44)"
>
Node Method: A Second Example
</a>
<li><a
href=
"javascript:goto_page(45)"
>
Floating Independent Voltage Sources
</a>
<li><a
href=
"javascript:goto_page(46)"
>
Dependent Sources and the Node Method
</a>
<li><a
href=
"javascript:goto_page(47)"
>
The Conductance and Source Matrices *}
</a>
</ul>
<li><a
href=
"javascript:goto_page(48)"
>
Loop Method *
</a>
<li><a
href=
"javascript:goto_page(49)"
>
Superposition
</a>
<ul>
<li><a
href=
"javascript:goto_page(50)"
>
Superposition Rules for Dependent Sources
</a>
</ul>
<li><a
href=
"javascript:goto_page(51)"
>
Th\'e}venin's Theorem and Norton's Theorem
</a>
<ul>
<li><a
href=
"javascript:goto_page(52)"
>
The Th\'e}venin Equivalent Network
</a>
<li><a
href=
"javascript:goto_page(53)"
>
The Norton Equivalent Network
</a>
<li><a
href=
"javascript:goto_page(54)"
>
More Examples
</a>
</ul>
<li><a
href=
"javascript:goto_page(55)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(56)"
>
Analysis of Nonlinear Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(57)"
>
Introduction to Nonlinear Elements
</a>
<li><a
href=
"javascript:goto_page(58)"
>
Analytical Solutions
</a>
<li><a
href=
"javascript:goto_page(59)"
>
Graphical Analysis
</a>
<li><a
href=
"javascript:goto_page(60)"
>
Piecewise Linear Analysis
</a>
<ul>
<li><a
href=
"javascript:goto_page(61)"
>
Improved Piecewise Linear Models for Nonlinear Elements *
</a>
</ul>
<li><a
href=
"javascript:goto_page(62)"
>
Incremental Analysis
</a>
<li><a
href=
"javascript:goto_page(63)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(64)"
>
The Digital Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(65)"
>
Voltage Levels and the Static Discipline
</a>
<li><a
href=
"javascript:goto_page(66)"
>
Boolean Logic
</a>
<li><a
href=
"javascript:goto_page(67)"
>
Combinational Gates
</a>
<li><a
href=
"javascript:goto_page(68)"
>
Standard Sum-of-Products Representation
</a>
<li><a
href=
"javascript:goto_page(69)"
>
Simplifying Logic Expressions *
</a>
<li><a
href=
"javascript:goto_page(70)"
>
Number Representation
</a>
<li><a
href=
"javascript:goto_page(71)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(72)"
>
The MOSFET Switch
</a>
<ul>
<li><a
href=
"javascript:goto_page(73)"
>
The Switch
</a>
<li><a
href=
"javascript:goto_page(74)"
>
Logic Functions Using Switches
</a>
<li><a
href=
"javascript:goto_page(75)"
>
The MOSFET Device and Its S Model
</a>
<li><a
href=
"javascript:goto_page(76)"
>
MOSFET Switch Implementation of Logic Gates
</a>
<li><a
href=
"javascript:goto_page(77)"
>
Static Analysis Using the S Model
</a>
<li><a
href=
"javascript:goto_page(78)"
>
The SR Model of the MOSFET
</a>
<li><a
href=
"javascript:goto_page(79)"
>
Physical Structure of the MOSFET $*$
</a>
<li><a
href=
"javascript:goto_page(80)"
>
Static Analysis Using the SR Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(81)"
>
Static Analysis of the \it NAND} Gate Using the SR Model
</a>
</ul>
<li><a
href=
"javascript:goto_page(82)"
>
Signal Restoration
</a>
<ul>
<li><a
href=
"javascript:goto_page(83)"
>
Signal Restoration and Gain
</a>
<li><a
href=
"javascript:goto_page(84)"
>
Signal Restoration and Nonlinearity
</a>
<li><a
href=
"javascript:goto_page(85)"
>
Buffer Characteristics and the Static Discipline
</a>
<li><a
href=
"javascript:goto_page(86)"
>
Inverter Transfer Characteristics and the Static Discipline
</a>
</ul>
<li><a
href=
"javascript:goto_page(87)"
>
Power Consumption in Logic Gates
</a>
<li><a
href=
"javascript:goto_page(88)"
>
Active Pullups
</a>
<li><a
href=
"javascript:goto_page(89)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(90)"
>
The MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(91)"
>
Signal Amplification
</a>
<li><a
href=
"javascript:goto_page(92)"
>
Review of Dependent Sources
</a>
<li><a
href=
"javascript:goto_page(93)"
>
Actual MOSFET Characteristics
</a>
<li><a
href=
"javascript:goto_page(94)"
>
The Switch Current Source (SCS) MOSFET Model
</a>
<li><a
href=
"javascript:goto_page(95)"
>
The MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(96)"
>
Biasing the MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(97)"
>
The Amplifier Abstraction and the Saturation Discipline
</a>
</ul>
<li><a
href=
"javascript:goto_page(98)"
>
Large Signal Analysis of the MOSFET Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(99)"
>
$v_IN}$ versus $v_OUT}$ in the Saturation Region
</a>
<li><a
href=
"javascript:goto_page(100)"
>
Valid Input and Output Voltage Ranges
</a>
<li><a
href=
"javascript:goto_page(101)"
>
Lowest Valid Input Voltage
</a>
<li><a
href=
"javascript:goto_page(102)"
>
Highest Valid Input Voltage
</a>
</ul>
<li><a
href=
"javascript:goto_page(103)"
>
Operating Point Selection
</a>
<li><a
href=
"javascript:goto_page(104)"
>
Switch Unified (SU) MOSFET Model $*$
</a>
<li><a
href=
"javascript:goto_page(105)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(106)"
>
The Small Signal Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(107)"
>
Overview of the Nonlinear MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(108)"
>
The Small Signal Model
</a>
<ul>
<li><a
href=
"javascript:goto_page(109)"
>
Small Signal Circuit Representation
</a>
<li><a
href=
"javascript:goto_page(110)"
>
Small Signal Circuit for the MOSFET Amplifier
</a>
<li><a
href=
"javascript:goto_page(111)"
>
Selecting an Operating Point
</a>
<li><a
href=
"javascript:goto_page(112)"
>
Input and Output Resistance, Current and Power Gain
</a>
<li><a
href=
"javascript:goto_page(113)"
>
Input Resistance $r_i}$
</a>
<li><a
href=
"javascript:goto_page(114)"
>
Output Resistance $r_out}$
</a>
<li><a
href=
"javascript:goto_page(115)"
>
Current Gain
</a>
<li><a
href=
"javascript:goto_page(116)"
>
Power Gain
</a>
</ul>
<li><a
href=
"javascript:goto_page(117)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(118)"
>
Energy Storage Elements
</a>
<ul>
<li><a
href=
"javascript:goto_page(119)"
>
Constitutive Laws
</a>
<ul>
<li><a
href=
"javascript:goto_page(120)"
>
Capacitors
</a>
<li><a
href=
"javascript:goto_page(121)"
>
Inductors
</a>
</ul>
<li><a
href=
"javascript:goto_page(122)"
>
Series \
&
Parallel Connections
</a>
<ul>
<li><a
href=
"javascript:goto_page(123)"
>
Capacitors
</a>
<li><a
href=
"javascript:goto_page(124)"
>
Inductors
</a>
</ul>
<li><a
href=
"javascript:goto_page(125)"
>
Special Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(126)"
>
MOSFET Gate Capacitance
</a>
<li><a
href=
"javascript:goto_page(127)"
>
Wiring Loop Inductance
</a>
<li><a
href=
"javascript:goto_page(128)"
>
IC Wiring Capacitance and Inductance
</a>
<li><a
href=
"javascript:goto_page(129)"
>
Transformers *
</a>
</ul>
<li><a
href=
"javascript:goto_page(130)"
>
Simple Circuit Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(131)"
>
Sinusoidal Inputs *
</a>
<li><a
href=
"javascript:goto_page(132)"
>
Step Inputs
</a>
<li><a
href=
"javascript:goto_page(133)"
>
Impulse Inputs
</a>
<li><a
href=
"javascript:goto_page(134)"
>
Role Reversal$*$
</a>
</ul>
<li><a
href=
"javascript:goto_page(135)"
>
Energy, Charge and Flux Conservation
</a>
<li><a
href=
"javascript:goto_page(136)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(137)"
>
First-order Transients
</a>
<ul>
<li><a
href=
"javascript:goto_page(138)"
>
Analysis of RC Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(139)"
>
Parallel RC Circuit, Step Input
</a>
<li><a
href=
"javascript:goto_page(140)"
>
RC Discharge Transient
</a>
<li><a
href=
"javascript:goto_page(141)"
>
Properties of Exponentials
</a>
<li><a
href=
"javascript:goto_page(142)"
>
Series RC Circuit, Step Input
</a>
<li><a
href=
"javascript:goto_page(143)"
>
Series RC Circuit, Square Wave Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(144)"
>
Analysis of RL Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(145)"
>
Series RL Circuit, Step Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(146)"
>
Intuitive Analysis
</a>
<li><a
href=
"javascript:goto_page(147)"
>
Propagation Delay and the Digital Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(148)"
>
Definitions
</a>
<li><a
href=
"javascript:goto_page(149)"
>
Computing $t_pd}$ from the SRC MOSFET Model
</a>
<li><a
href=
"javascript:goto_page(150)"
>
Computing $t_pd,0 \rightarrow 1}$
</a>
<li><a
href=
"javascript:goto_page(151)"
>
Computing $t_pd,1 \rightarrow 0}$
</a>
<li><a
href=
"javascript:goto_page(152)"
>
Computing $t_pd}$
</a>
</ul>
<li><a
href=
"javascript:goto_page(153)"
>
State and State Variables *
</a>
<ul>
<li><a
href=
"javascript:goto_page(154)"
>
The Concept of State
</a>
<li><a
href=
"javascript:goto_page(155)"
>
Computer Analysis using the State Equation
</a>
<li><a
href=
"javascript:goto_page(156)"
>
Zero-input and Zero-state Response
</a>
<li><a
href=
"javascript:goto_page(157)"
>
Solution by Integrating Factors*
</a>
</ul>
<li><a
href=
"javascript:goto_page(158)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(159)"
>
Effect of Wire Inductance in Digital Circuits
</a>
<li><a
href=
"javascript:goto_page(160)"
>
Ramp Inputs and Linearity
</a>
<li><a
href=
"javascript:goto_page(161)"
>
Response of an RC Circuit to Short Pulses and the Impulse Response
</a>
<li><a
href=
"javascript:goto_page(162)"
>
Intuitive Method for the Impulse Response
</a>
<li><a
href=
"javascript:goto_page(163)"
>
Clock Signals and Clock Fanout
</a>
<li><a
href=
"javascript:goto_page(164)"
>
RC Response to Decaying Exponential *
</a>
<li><a
href=
"javascript:goto_page(165)"
>
Series RL Circuit with Sinewave Input
</a>
</ul>
<li><a
href=
"javascript:goto_page(166)"
>
Digital Memory
</a>
<ul>
<li><a
href=
"javascript:goto_page(167)"
>
The Concept of Digital State
</a>
<li><a
href=
"javascript:goto_page(168)"
>
An Abstract Digital Memory Element
</a>
<li><a
href=
"javascript:goto_page(169)"
>
Design of the Digital Memory Element
</a>
<li><a
href=
"javascript:goto_page(170)"
>
A Static Memory Element
</a>
</ul>
<li><a
href=
"javascript:goto_page(171)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(172)"
>
Energy and Power in Digital Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(173)"
>
Power and Energy Relations for a Simple RC Circuit
</a>
<li><a
href=
"javascript:goto_page(174)"
>
Average Power in an RC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(175)"
>
Energy Dissipated during Interval $T_1$
</a>
<li><a
href=
"javascript:goto_page(176)"
>
Energy Dissipated during Interval $T_2$
</a>
<li><a
href=
"javascript:goto_page(177)"
>
Total Energy Dissipated
</a>
</ul>
<li><a
href=
"javascript:goto_page(178)"
>
Power Dissipation in Logic Gates
</a>
<ul>
<li><a
href=
"javascript:goto_page(179)"
>
Static Power Dissipation
</a>
<li><a
href=
"javascript:goto_page(180)"
>
Total Power Dissipation
</a>
<li><a
href=
"javascript:goto_page(181)"
>
Energy Dissipated during Interval $T_1$
</a>
<li><a
href=
"javascript:goto_page(182)"
>
Energy Dissipated during Interval $T_2$
</a>
<li><a
href=
"javascript:goto_page(183)"
>
Total Energy Dissipated
</a>
</ul>
<li><a
href=
"javascript:goto_page(184)"
>
NMOS Logic
</a>
<li><a
href=
"javascript:goto_page(185)"
>
CMOS Logic
</a>
<ul>
<li><a
href=
"javascript:goto_page(186)"
>
CMOS Logic Gate Design
</a>
<li><a
href=
"javascript:goto_page(187)"
>
CMOS NAND Gate
</a>
<li><a
href=
"javascript:goto_page(188)"
>
CMOS NOR Gate
</a>
<li><a
href=
"javascript:goto_page(189)"
>
Other Logic Functions
</a>
</ul>
<li><a
href=
"javascript:goto_page(190)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(191)"
>
Transients in Second Order Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(192)"
>
Undriven LC Circuit
</a>
<li><a
href=
"javascript:goto_page(193)"
>
Undriven, Series RLC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(194)"
>
Under-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(195)"
>
Over-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(196)"
>
Critically-Damped Dynamics
</a>
</ul>
<li><a
href=
"javascript:goto_page(197)"
>
Stored Energy in Transient, Series RLC Circuit
</a>
<li><a
href=
"javascript:goto_page(198)"
>
Undriven, Parallel RLC Circuit *
</a>
<ul>
<li><a
href=
"javascript:goto_page(199)"
>
Under-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(200)"
>
Over-Damped Dynamics
</a>
<li><a
href=
"javascript:goto_page(201)"
>
Critically-Damped Dynamics
</a>
</ul>
<li><a
href=
"javascript:goto_page(202)"
>
Driven, Series RLC Circuit
</a>
<ul>
<li><a
href=
"javascript:goto_page(203)"
>
Step Response
</a>
<li><a
href=
"javascript:goto_page(204)"
>
Impulse Response *
</a>
</ul>
<li><a
href=
"javascript:goto_page(205)"
>
Driven, Parallel RLC Circuit *
</a>
<ul>
<li><a
href=
"javascript:goto_page(206)"
>
Step Response
</a>
<li><a
href=
"javascript:goto_page(207)"
>
Impulse Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(208)"
>
Intuitive Analysis of Second-Order Circuits
</a>
<li><a
href=
"javascript:goto_page(209)"
>
Two-Capacitor Or Two-Inductor Circuits
</a>
<li><a
href=
"javascript:goto_page(210)"
>
State-Variable Method *
</a>
<li><a
href=
"javascript:goto_page(211)"
>
State-Space Analysis *
</a>
<ul>
<li><a
href=
"javascript:goto_page(212)"
>
Numerical Solution *
</a>
</ul>
<li><a
href=
"javascript:goto_page(213)"
>
Higher-Order Circuits*
</a>
<li><a
href=
"javascript:goto_page(214)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(215)"
>
Sinusoidal Steady State
</a>
<ul>
<li><a
href=
"javascript:goto_page(216)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(217)"
>
Analysis using Complex Exponential Drive
</a>
<ul>
<li><a
href=
"javascript:goto_page(218)"
>
Homogeneous Solution
</a>
<li><a
href=
"javascript:goto_page(219)"
>
Particular Solution
</a>
<li><a
href=
"javascript:goto_page(220)"
>
Complete Solution
</a>
<li><a
href=
"javascript:goto_page(221)"
>
Sinusoidal Steady State Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(222)"
>
The Boxes: Impedance
</a>
<ul>
<li><a
href=
"javascript:goto_page(223)"
>
Example: Series RL Circuit
</a>
<li><a
href=
"javascript:goto_page(224)"
>
Example: Another RC Circuit
</a>
<li><a
href=
"javascript:goto_page(225)"
>
Example: RC Circuit with Two Capacitors
</a>
<li><a
href=
"javascript:goto_page(226)"
>
Example: Analysis of Small Signal Amplifier with Capacitive Load
</a>
</ul>
<li><a
href=
"javascript:goto_page(227)"
>
Frequency Response: Magnitude/Phase vs. Frequency
</a>
<ul>
<li><a
href=
"javascript:goto_page(228)"
>
Frequency Response of Capacitors, Inductor
</a>
<li><a
href=
"javascript:goto_page(229)"
>
Intuitively Sketching th
</a>
<li><a
href=
"javascript:goto_page(230)"
>
The Bode Plot: Sketching the Frequency Response of General Functions *
</a>
</ul>
<li><a
href=
"javascript:goto_page(231)"
>
Filters
</a>
<ul>
<li><a
href=
"javascript:goto_page(232)"
>
Filter Design Example: Crossover Network
</a>
<li><a
href=
"javascript:goto_page(233)"
>
Decoupling Amplifier Stages
</a>
</ul>
<li><a
href=
"javascript:goto_page(234)"
>
Time Domain
</a>
<ul>
<li><a
href=
"javascript:goto_page(235)"
>
Frequency Domain Analysis
</a>
<li><a
href=
"javascript:goto_page(236)"
>
Time Domain Analysis
</a>
<li><a
href=
"javascript:goto_page(237)"
>
Comparing Time Domain and Frequency Domain Analyses
</a>
</ul>
<li><a
href=
"javascript:goto_page(238)"
>
Power and Energy in an Impedance
</a>
<ul>
<li><a
href=
"javascript:goto_page(239)"
>
Arbitrary Impedance
</a>
<li><a
href=
"javascript:goto_page(240)"
>
Pure Resistance
</a>
<li><a
href=
"javascript:goto_page(241)"
>
Pure Reactance
</a>
<li><a
href=
"javascript:goto_page(242)"
>
Example: Power in an RC Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(243)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(244)"
>
Sinusoidal Steady State: Resonance
</a>
<ul>
<li><a
href=
"javascript:goto_page(245)"
>
Parallel RLC, Sinusoidal Response
</a>
<ul>
<li><a
href=
"javascript:goto_page(246)"
>
Homogeneous Solution
</a>
<li><a
href=
"javascript:goto_page(247)"
>
Particular Solution
</a>
<li><a
href=
"javascript:goto_page(248)"
>
Total Solution for the Parallel RLC Circuit
</a>
</ul>
<li><a
href=
"javascript:goto_page(249)"
>
Frequency Response for Resonant Systems
</a>
<ul>
<li><a
href=
"javascript:goto_page(250)"
>
The Resonant Region of the Frequency Response
</a>
</ul>
<li><a
href=
"javascript:goto_page(251)"
>
Series RLC
</a>
<li><a
href=
"javascript:goto_page(252)"
>
The Bode Plot for Resonant Functions *
</a>
<li><a
href=
"javascript:goto_page(253)"
>
Filter Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(254)"
>
Bandpass Filter
</a>
<li><a
href=
"javascript:goto_page(255)"
>
Lowpass Filter
</a>
<li><a
href=
"javascript:goto_page(256)"
>
Highpass Filter
</a>
<li><a
href=
"javascript:goto_page(257)"
>
Notch Filter
</a>
</ul>
<li><a
href=
"javascript:goto_page(258)"
>
Stored Energy in a Resonant Circuit
</a>
<li><a
href=
"javascript:goto_page(259)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(260)"
>
The Operational Amplifier Abstraction
</a>
<ul>
<li><a
href=
"javascript:goto_page(261)"
>
Introduction
</a>
<ul>
<li><a
href=
"javascript:goto_page(262)"
>
Historical Perspective
</a>
</ul>
<li><a
href=
"javascript:goto_page(263)"
>
Device Properties of the Operational Amplifier
</a>
<ul>
<li><a
href=
"javascript:goto_page(264)"
>
The Op Amp Model
</a>
</ul>
<li><a
href=
"javascript:goto_page(265)"
>
Simple Op Amp Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(266)"
>
The Non-inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(267)"
>
A Second Example: The Inverting Connection
</a>
<li><a
href=
"javascript:goto_page(268)"
>
Sensitivity
</a>
<li><a
href=
"javascript:goto_page(269)"
>
A Special Case: The Voltage Follower
</a>
<li><a
href=
"javascript:goto_page(270)"
>
An Additional Constraint: $v^+ - v^- \simeq 0$
</a>
</ul>
<li><a
href=
"javascript:goto_page(271)"
>
Input and Output Resistances
</a>
<ul>
<li><a
href=
"javascript:goto_page(272)"
>
Output Resistance, Inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(273)"
>
Input Resistance, Inverting Connection
</a>
<li><a
href=
"javascript:goto_page(274)"
>
Input and Output R for Non-Inverting Op Amp
</a>
<li><a
href=
"javascript:goto_page(275)"
>
Generalization on Input Resistance *
</a>
<li><a
href=
"javascript:goto_page(276)"
>
Example: Op Amp Current Source
</a>
</ul>
<li><a
href=
"javascript:goto_page(277)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(278)"
>
Adder
</a>
<li><a
href=
"javascript:goto_page(279)"
>
Subtracter
</a>
</ul>
<li><a
href=
"javascript:goto_page(280)"
>
Op Amp RC Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(281)"
>
Op Amp Integrator
</a>
<li><a
href=
"javascript:goto_page(282)"
>
Op Amp Differentiator
</a>
<li><a
href=
"javascript:goto_page(283)"
>
An RC Active Filter
</a>
<li><a
href=
"javascript:goto_page(284)"
>
The RC Active Filter -- Impedance Analysis
</a>
<li><a
href=
"javascript:goto_page(285)"
>
Sallen-Key Filter
</a>
</ul>
<li><a
href=
"javascript:goto_page(286)"
>
Op Amp in Saturation
</a>
<ul>
<li><a
href=
"javascript:goto_page(287)"
>
Op Amp Integrator in Saturation
</a>
</ul>
<li><a
href=
"javascript:goto_page(288)"
>
Positive Feedback
</a>
<ul>
<li><a
href=
"javascript:goto_page(289)"
>
RC Oscillator
</a>
</ul>
<li><a
href=
"javascript:goto_page(290)"
>
Two-ports*
</a>
<li><a
href=
"javascript:goto_page(291)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(292)"
>
Diodes
</a>
<ul>
<li><a
href=
"javascript:goto_page(293)"
>
Introduction
</a>
<li><a
href=
"javascript:goto_page(294)"
>
Semiconductor Diode Characteristics
</a>
<li><a
href=
"javascript:goto_page(295)"
>
Analysis of Diode Circuits
</a>
<ul>
<li><a
href=
"javascript:goto_page(296)"
>
Method of Assumed States
</a>
</ul>
<li><a
href=
"javascript:goto_page(297)"
>
Nonlinear Analysis with RL and RC
</a>
<ul>
<li><a
href=
"javascript:goto_page(298)"
>
Peak Detector
</a>
<li><a
href=
"javascript:goto_page(299)"
>
Example: Clamping Circuit
</a>
<li><a
href=
"javascript:goto_page(300)"
>
A Switched Power Supply Using a Diode
</a>
</ul>
<li><a
href=
"javascript:goto_page(301)"
>
Additional Examples
</a>
<ul>
<li><a
href=
"javascript:goto_page(302)"
>
Piecewise Linear Example: Clipping Circuit
</a>
<li><a
href=
"javascript:goto_page(303)"
>
Exponentiation Circuit
</a>
<li><a
href=
"javascript:goto_page(304)"
>
Piecewise Linear Example: Limiter
</a>
<li><a
href=
"javascript:goto_page(305)"
>
Example: Full-Wave Diode Bridge
</a>
<li><a
href=
"javascript:goto_page(306)"
>
Incremental Example: Zener Diode Regulator
</a>
<li><a
href=
"javascript:goto_page(307)"
>
Incremental Example: Diode Attenuator
</a>
</ul>
<li><a
href=
"javascript:goto_page(308)"
>
Summary
</a>
</ul>
<li><a
href=
"javascript:goto_page(309)"
>
Maxwell's Equations and the LMD
</a>
<ul>
<li><a
href=
"javascript:goto_page(310)"
>
The Lumped Matter Discipline
</a>
<ul>
<li><a
href=
"javascript:goto_page(311)"
>
The First Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(312)"
>
The Second Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(313)"
>
The Third Constraint of the Lumped Matter Discipline
</a>
<li><a
href=
"javascript:goto_page(314)"
>
The Lumped Matter Discipline Applied to Circuits
</a>
</ul>
<li><a
href=
"javascript:goto_page(315)"
>
Deriving Kirchhoff's Laws
</a>
<li><a
href=
"javascript:goto_page(316)"
>
Deriving the Resistance of a Piece of Material
</a>
</ul>
<li><a
href=
"javascript:goto_page(317)"
>
Trigonometric Functions \
&
Identities
</a>
<ul>
<li><a
href=
"javascript:goto_page(318)"
>
Negative Arguments
</a>
<li><a
href=
"javascript:goto_page(319)"
>
Phase-Shifted Arguments
</a>
<li><a
href=
"javascript:goto_page(320)"
>
Sum and Difference Arguments
</a>
<li><a
href=
"javascript:goto_page(321)"
>
Products
</a>
<li><a
href=
"javascript:goto_page(322)"
>
Half-Angle \
&
Twice-Angle Arguments
</a>
<li><a
href=
"javascript:goto_page(323)"
>
Squares
</a>
<li><a
href=
"javascript:goto_page(324)"
>
Miscellaneous
</a>
<li><a
href=
"javascript:goto_page(325)"
>
Taylor Series Expansions
</a>
<li><a
href=
"javascript:goto_page(326)"
>
Relations to $e^j\theta}$
</a>
</ul>
<li><a
href=
"javascript:goto_page(327)"
>
Complex Numbers
</a>
<ul>
<li><a
href=
"javascript:goto_page(328)"
>
Magnitude and Phase
</a>
<li><a
href=
"javascript:goto_page(329)"
>
Polar Representation
</a>
<li><a
href=
"javascript:goto_page(330)"
>
Addition and Subtraction
</a>
<li><a
href=
"javascript:goto_page(331)"
>
Multiplication and Division
</a>
<li><a
href=
"javascript:goto_page(332)"
>
Complex Conjugate
</a>
<li><a
href=
"javascript:goto_page(333)"
>
Properties of $e^j\theta}$
</a>
<li><a
href=
"javascript:goto_page(334)"
>
Rotation
</a>
<li><a
href=
"javascript:goto_page(335)"
>
Complex Functions of Time
</a>
<li><a
href=
"javascript:goto_page(336)"
>
Numerical Examples
</a>
</ul>
<li><a
href=
"javascript:goto_page(337)"
>
Solving Simultaneous Linear Equations
</a>
staticbook.html
View file @
bd657f5d
...
@@ -48,27 +48,7 @@ function next_page() {
...
@@ -48,27 +48,7 @@ function next_page() {
<table>
<table>
<tr><td
valign=
top
>
<tr><td
valign=
top
>
<ul
id=
"booknav"
class=
"treeview-booknav"
>
<ul
id=
"booknav"
class=
"treeview-booknav"
>
<li>
<a
href=
"javascript:goto_page(1)"
>
Front material
</a>
<
%
include
file=
"book_toc.html"
/>
<ul>
<li>
<a
href=
"javascript:goto_page(5);"
>
Contents
</a>
<li>
<a
href=
"javascript:goto_page(23);"
>
Preface
</a>
</ul>
<li>
<a
href=
"javascript:goto_page(31);"
>
Ch 1: The Circuit Abstraction
</a>
<ul>
<li>
Section 1
<li>
Section 2
</ul>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 2:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 3:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 4:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 5:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 6:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 7:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 8:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 9:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 10:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 11:
</a>
<li>
<a
href=
"javascript:goto_page();"
>
Ch 12:
</a>
</ul>
</ul>
</td><td
width=
10
></td><td
width=
1
bgcolor=
black
></td><td>
</td><td
width=
10
></td><td
width=
1
bgcolor=
black
></td><td>
<div
align=
center
>
<div
align=
center
>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment