Commit bd657f5d by Piotr Mitros

Book TOC works

parent c99ff280
<li><a href="javascript:goto_page(1)"> The Circuit Abstraction </a>
<ul> <li><a href="javascript:goto_page(2)"> The Power of Abstraction </a>
<li><a href="javascript:goto_page(3)"> The Lumped Circuit Abstraction</a>
<li><a href="javascript:goto_page(4)"> The Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(5)"> Limitations of the Lumped Circuit Abstraction </a>
<li><a href="javascript:goto_page(6)"> Practical Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(7)"> Batteries </a>
<li><a href="javascript:goto_page(8)"> Linear Resistors </a>
<li><a href="javascript:goto_page(9)"> Associated Variables Convention </a>
</ul> <li><a href="javascript:goto_page(10)"> Ideal Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(11)"> Ideal Voltage Sources, Wires and Resistors </a>
<li><a href="javascript:goto_page(12)"> Element Laws </a>
<li><a href="javascript:goto_page(13)"> The Current Source</a>
</ul> <li><a href="javascript:goto_page(14)"> Modeling Physical Elements </a>
<li><a href="javascript:goto_page(15)"> Signal Representation </a>
<ul> <li><a href="javascript:goto_page(16)"> Analog Signals</a>
<li><a href="javascript:goto_page(17)"> Digital Signals</a>
</ul> <li><a href="javascript:goto_page(18)"> Summary </a>
</ul> <li><a href="javascript:goto_page(19)"> Resistive Networks </a>
<ul> <li><a href="javascript:goto_page(20)"> Terminology </a>
<li><a href="javascript:goto_page(21)"> Kirchhoff's Laws </a>
<ul> <li><a href="javascript:goto_page(22)"> KCL </a>
<li><a href="javascript:goto_page(23)"> KVL </a>
</ul> <li><a href="javascript:goto_page(24)"> Circuit Analysis: Basic Method </a>
<ul> <li><a href="javascript:goto_page(25)"> Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(26)"> Quick Intuitive Analysis of Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(27)"> Energy Conservation </a>
<li><a href="javascript:goto_page(28)"> Voltage and Current Dividers </a>
<li><a href="javascript:goto_page(29)"> Voltage Dividers </a>
<li><a href="javascript:goto_page(30)"> Resistors in Series </a>
<li><a href="javascript:goto_page(31)"> Current Dividers </a>
<li><a href="javascript:goto_page(32)"> Resistors in Parallel </a>
<li><a href="javascript:goto_page(33)"> A More Complex Circuit </a>
</ul> <li><a href="javascript:goto_page(34)"> Intuitive Method of Circuit Analysis </a>
<li><a href="javascript:goto_page(35)"> More Examples </a>
<li><a href="javascript:goto_page(36)"> Dependent Sources and the Control Concept </a>
<ul> <li><a href="javascript:goto_page(37)"> Circuits with Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(38)"> A Formulation Suitable for a Computer Solution * </a>
<li><a href="javascript:goto_page(39)"> Summary </a>
</ul> <li><a href="javascript:goto_page(40)"> Network Theorems </a>
<ul> <li><a href="javascript:goto_page(41)"> Introduction </a>
<li><a href="javascript:goto_page(42)"> The Node Voltage </a>
<li><a href="javascript:goto_page(43)"> The Node Method </a>
<ul> <li><a href="javascript:goto_page(44)"> Node Method: A Second Example </a>
<li><a href="javascript:goto_page(45)"> Floating Independent Voltage Sources </a>
<li><a href="javascript:goto_page(46)"> Dependent Sources and the Node Method </a>
<li><a href="javascript:goto_page(47)"> The Conductance and Source Matrices *}</a>
</ul> <li><a href="javascript:goto_page(48)"> Loop Method * </a>
<li><a href="javascript:goto_page(49)"> Superposition </a>
<ul> <li><a href="javascript:goto_page(50)"> Superposition Rules for Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(51)"> Th\'e}venin's Theorem and Norton's Theorem </a>
<ul> <li><a href="javascript:goto_page(52)"> The Th\'e}venin Equivalent Network </a>
<li><a href="javascript:goto_page(53)"> The Norton Equivalent Network </a>
<li><a href="javascript:goto_page(54)"> More Examples </a>
</ul> <li><a href="javascript:goto_page(55)"> Summary </a>
</ul> <li><a href="javascript:goto_page(56)"> Analysis of Nonlinear Circuits </a>
<ul> <li><a href="javascript:goto_page(57)"> Introduction to Nonlinear Elements </a>
<li><a href="javascript:goto_page(58)"> Analytical Solutions </a>
<li><a href="javascript:goto_page(59)"> Graphical Analysis </a>
<li><a href="javascript:goto_page(60)"> Piecewise Linear Analysis </a>
<ul> <li><a href="javascript:goto_page(61)"> Improved Piecewise Linear Models for Nonlinear Elements * </a>
</ul> <li><a href="javascript:goto_page(62)"> Incremental Analysis </a>
<li><a href="javascript:goto_page(63)"> Summary </a>
</ul> <li><a href="javascript:goto_page(64)"> The Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(65)"> Voltage Levels and the Static Discipline </a>
<li><a href="javascript:goto_page(66)"> Boolean Logic </a>
<li><a href="javascript:goto_page(67)"> Combinational Gates </a>
<li><a href="javascript:goto_page(68)"> Standard Sum-of-Products Representation </a>
<li><a href="javascript:goto_page(69)"> Simplifying Logic Expressions * </a>
<li><a href="javascript:goto_page(70)"> Number Representation </a>
<li><a href="javascript:goto_page(71)"> Summary </a>
</ul> <li><a href="javascript:goto_page(72)"> The MOSFET Switch </a>
<ul> <li><a href="javascript:goto_page(73)"> The Switch </a>
<li><a href="javascript:goto_page(74)"> Logic Functions Using Switches </a>
<li><a href="javascript:goto_page(75)"> The MOSFET Device and Its S Model </a>
<li><a href="javascript:goto_page(76)"> MOSFET Switch Implementation of Logic Gates </a>
<li><a href="javascript:goto_page(77)"> Static Analysis Using the S Model </a>
<li><a href="javascript:goto_page(78)"> The SR Model of the MOSFET </a>
<li><a href="javascript:goto_page(79)"> Physical Structure of the MOSFET $*$ </a>
<li><a href="javascript:goto_page(80)"> Static Analysis Using the SR Model </a>
<ul> <li><a href="javascript:goto_page(81)"> Static Analysis of the \it NAND} Gate Using the SR Model </a>
</ul> <li><a href="javascript:goto_page(82)"> Signal Restoration </a>
<ul> <li><a href="javascript:goto_page(83)"> Signal Restoration and Gain </a>
<li><a href="javascript:goto_page(84)"> Signal Restoration and Nonlinearity </a>
<li><a href="javascript:goto_page(85)"> Buffer Characteristics and the Static Discipline </a>
<li><a href="javascript:goto_page(86)"> Inverter Transfer Characteristics and the Static Discipline </a>
</ul> <li><a href="javascript:goto_page(87)"> Power Consumption in Logic Gates </a>
<li><a href="javascript:goto_page(88)"> Active Pullups </a>
<li><a href="javascript:goto_page(89)"> Summary </a>
</ul> <li><a href="javascript:goto_page(90)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(91)"> Signal Amplification </a>
<li><a href="javascript:goto_page(92)"> Review of Dependent Sources </a>
<li><a href="javascript:goto_page(93)"> Actual MOSFET Characteristics</a>
<li><a href="javascript:goto_page(94)"> The Switch Current Source (SCS) MOSFET Model </a>
<li><a href="javascript:goto_page(95)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(96)"> Biasing the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(97)"> The Amplifier Abstraction and the Saturation Discipline </a>
</ul> <li><a href="javascript:goto_page(98)"> Large Signal Analysis of the MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(99)"> $v_IN}$ versus $v_OUT}$ in the Saturation Region </a>
<li><a href="javascript:goto_page(100)"> Valid Input and Output Voltage Ranges </a>
<li><a href="javascript:goto_page(101)"> Lowest Valid Input Voltage </a>
<li><a href="javascript:goto_page(102)"> Highest Valid Input Voltage </a>
</ul> <li><a href="javascript:goto_page(103)"> Operating Point Selection </a>
<li><a href="javascript:goto_page(104)"> Switch Unified (SU) MOSFET Model $*$ </a>
<li><a href="javascript:goto_page(105)"> Summary </a>
</ul> <li><a href="javascript:goto_page(106)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(107)"> Overview of the Nonlinear MOSFET Amplifier </a>
<li><a href="javascript:goto_page(108)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(109)"> Small Signal Circuit Representation </a>
<li><a href="javascript:goto_page(110)"> Small Signal Circuit for the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(111)"> Selecting an Operating Point </a>
<li><a href="javascript:goto_page(112)"> Input and Output Resistance, Current and Power Gain </a>
<li><a href="javascript:goto_page(113)"> Input Resistance $r_i}$ </a>
<li><a href="javascript:goto_page(114)"> Output Resistance $r_out}$ </a>
<li><a href="javascript:goto_page(115)"> Current Gain </a>
<li><a href="javascript:goto_page(116)"> Power Gain </a>
</ul> <li><a href="javascript:goto_page(117)"> Summary </a>
</ul> <li><a href="javascript:goto_page(118)"> Energy Storage Elements </a>
<ul> <li><a href="javascript:goto_page(119)"> Constitutive Laws </a>
<ul> <li><a href="javascript:goto_page(120)"> Capacitors </a>
<li><a href="javascript:goto_page(121)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(122)"> Series \& Parallel Connections </a>
<ul> <li><a href="javascript:goto_page(123)"> Capacitors </a>
<li><a href="javascript:goto_page(124)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(125)"> Special Examples </a>
<ul> <li><a href="javascript:goto_page(126)"> MOSFET Gate Capacitance </a>
<li><a href="javascript:goto_page(127)"> Wiring Loop Inductance </a>
<li><a href="javascript:goto_page(128)"> IC Wiring Capacitance and Inductance </a>
<li><a href="javascript:goto_page(129)"> Transformers * </a>
</ul> <li><a href="javascript:goto_page(130)"> Simple Circuit Examples </a>
<ul> <li><a href="javascript:goto_page(131)"> Sinusoidal Inputs * </a>
<li><a href="javascript:goto_page(132)"> Step Inputs </a>
<li><a href="javascript:goto_page(133)"> Impulse Inputs </a>
<li><a href="javascript:goto_page(134)"> Role Reversal$*$ </a>
</ul> <li><a href="javascript:goto_page(135)"> Energy, Charge and Flux Conservation </a>
<li><a href="javascript:goto_page(136)"> Summary </a>
</ul> <li><a href="javascript:goto_page(137)"> First-order Transients </a>
<ul> <li><a href="javascript:goto_page(138)"> Analysis of RC Circuits </a>
<ul> <li><a href="javascript:goto_page(139)"> Parallel RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(140)"> RC Discharge Transient </a>
<li><a href="javascript:goto_page(141)"> Properties of Exponentials </a>
<li><a href="javascript:goto_page(142)"> Series RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(143)"> Series RC Circuit, Square Wave Input </a>
</ul> <li><a href="javascript:goto_page(144)"> Analysis of RL Circuits </a>
<ul> <li><a href="javascript:goto_page(145)"> Series RL Circuit, Step Input </a>
</ul> <li><a href="javascript:goto_page(146)"> Intuitive Analysis </a>
<li><a href="javascript:goto_page(147)"> Propagation Delay and the Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(148)"> Definitions </a>
<li><a href="javascript:goto_page(149)"> Computing $t_pd}$ from the SRC MOSFET Model </a>
<li><a href="javascript:goto_page(150)"> Computing $t_pd,0 \rightarrow 1}$ </a>
<li><a href="javascript:goto_page(151)"> Computing $t_pd,1 \rightarrow 0}$ </a>
<li><a href="javascript:goto_page(152)"> Computing $t_pd}$ </a>
</ul> <li><a href="javascript:goto_page(153)"> State and State Variables * </a>
<ul> <li><a href="javascript:goto_page(154)"> The Concept of State </a>
<li><a href="javascript:goto_page(155)"> Computer Analysis using the State Equation </a>
<li><a href="javascript:goto_page(156)"> Zero-input and Zero-state Response </a>
<li><a href="javascript:goto_page(157)"> Solution by Integrating Factors* </a>
</ul> <li><a href="javascript:goto_page(158)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(159)"> Effect of Wire Inductance in Digital Circuits </a>
<li><a href="javascript:goto_page(160)"> Ramp Inputs and Linearity </a>
<li><a href="javascript:goto_page(161)"> Response of an RC Circuit to Short Pulses and the Impulse Response </a>
<li><a href="javascript:goto_page(162)"> Intuitive Method for the Impulse Response </a>
<li><a href="javascript:goto_page(163)"> Clock Signals and Clock Fanout </a>
<li><a href="javascript:goto_page(164)"> RC Response to Decaying Exponential * </a>
<li><a href="javascript:goto_page(165)"> Series RL Circuit with Sinewave Input </a>
</ul> <li><a href="javascript:goto_page(166)"> Digital Memory </a>
<ul> <li><a href="javascript:goto_page(167)"> The Concept of Digital State </a>
<li><a href="javascript:goto_page(168)"> An Abstract Digital Memory Element </a>
<li><a href="javascript:goto_page(169)"> Design of the Digital Memory Element </a>
<li><a href="javascript:goto_page(170)"> A Static Memory Element </a>
</ul> <li><a href="javascript:goto_page(171)"> Summary </a>
</ul> <li><a href="javascript:goto_page(172)"> Energy and Power in Digital Circuits </a>
<ul> <li><a href="javascript:goto_page(173)"> Power and Energy Relations for a Simple RC Circuit </a>
<li><a href="javascript:goto_page(174)"> Average Power in an RC Circuit </a>
<ul> <li><a href="javascript:goto_page(175)"> Energy Dissipated during Interval $T_1$ </a>
<li><a href="javascript:goto_page(176)"> Energy Dissipated during Interval $T_2$ </a>
<li><a href="javascript:goto_page(177)"> Total Energy Dissipated </a>
</ul> <li><a href="javascript:goto_page(178)"> Power Dissipation in Logic Gates </a>
<ul> <li><a href="javascript:goto_page(179)"> Static Power Dissipation </a>
<li><a href="javascript:goto_page(180)"> Total Power Dissipation </a>
<li><a href="javascript:goto_page(181)"> Energy Dissipated during Interval $T_1$ </a>
<li><a href="javascript:goto_page(182)"> Energy Dissipated during Interval $T_2$ </a>
<li><a href="javascript:goto_page(183)"> Total Energy Dissipated </a>
</ul> <li><a href="javascript:goto_page(184)"> NMOS Logic </a>
<li><a href="javascript:goto_page(185)"> CMOS Logic </a>
<ul> <li><a href="javascript:goto_page(186)"> CMOS Logic Gate Design </a>
<li><a href="javascript:goto_page(187)"> CMOS NAND Gate </a>
<li><a href="javascript:goto_page(188)"> CMOS NOR Gate </a>
<li><a href="javascript:goto_page(189)"> Other Logic Functions </a>
</ul> <li><a href="javascript:goto_page(190)"> Summary </a>
</ul> <li><a href="javascript:goto_page(191)"> Transients in Second Order Circuits </a>
<ul> <li><a href="javascript:goto_page(192)"> Undriven LC Circuit </a>
<li><a href="javascript:goto_page(193)"> Undriven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(194)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(195)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(196)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(197)"> Stored Energy in Transient, Series RLC Circuit </a>
<li><a href="javascript:goto_page(198)"> Undriven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(199)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(200)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(201)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(202)"> Driven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(203)"> Step Response </a>
<li><a href="javascript:goto_page(204)"> Impulse Response * </a>
</ul> <li><a href="javascript:goto_page(205)"> Driven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(206)"> Step Response </a>
<li><a href="javascript:goto_page(207)"> Impulse Response </a>
</ul> <li><a href="javascript:goto_page(208)"> Intuitive Analysis of Second-Order Circuits </a>
<li><a href="javascript:goto_page(209)"> Two-Capacitor Or Two-Inductor Circuits </a>
<li><a href="javascript:goto_page(210)"> State-Variable Method * </a>
<li><a href="javascript:goto_page(211)"> State-Space Analysis * </a>
<ul> <li><a href="javascript:goto_page(212)"> Numerical Solution * </a>
</ul> <li><a href="javascript:goto_page(213)"> Higher-Order Circuits* </a>
<li><a href="javascript:goto_page(214)"> Summary </a>
</ul> <li><a href="javascript:goto_page(215)"> Sinusoidal Steady State </a>
<ul> <li><a href="javascript:goto_page(216)"> Introduction </a>
<li><a href="javascript:goto_page(217)"> Analysis using Complex Exponential Drive </a>
<ul> <li><a href="javascript:goto_page(218)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(219)"> Particular Solution </a>
<li><a href="javascript:goto_page(220)"> Complete Solution </a>
<li><a href="javascript:goto_page(221)"> Sinusoidal Steady State Response </a>
</ul> <li><a href="javascript:goto_page(222)"> The Boxes: Impedance </a>
<ul> <li><a href="javascript:goto_page(223)"> Example: Series RL Circuit </a>
<li><a href="javascript:goto_page(224)"> Example: Another RC Circuit </a>
<li><a href="javascript:goto_page(225)"> Example: RC Circuit with Two Capacitors </a>
<li><a href="javascript:goto_page(226)"> Example: Analysis of Small Signal Amplifier with Capacitive Load </a>
</ul> <li><a href="javascript:goto_page(227)"> Frequency Response: Magnitude/Phase vs. Frequency </a>
<ul> <li><a href="javascript:goto_page(228)"> Frequency Response of Capacitors, Inductor </a>
<li><a href="javascript:goto_page(229)"> Intuitively Sketching th </a>
<li><a href="javascript:goto_page(230)"> The Bode Plot: Sketching the Frequency Response of General Functions * </a>
</ul> <li><a href="javascript:goto_page(231)"> Filters </a>
<ul> <li><a href="javascript:goto_page(232)"> Filter Design Example: Crossover Network </a>
<li><a href="javascript:goto_page(233)"> Decoupling Amplifier Stages </a>
</ul> <li><a href="javascript:goto_page(234)"> Time Domain </a>
<ul> <li><a href="javascript:goto_page(235)"> Frequency Domain Analysis </a>
<li><a href="javascript:goto_page(236)"> Time Domain Analysis </a>
<li><a href="javascript:goto_page(237)"> Comparing Time Domain and Frequency Domain Analyses </a>
</ul> <li><a href="javascript:goto_page(238)"> Power and Energy in an Impedance </a>
<ul> <li><a href="javascript:goto_page(239)"> Arbitrary Impedance </a>
<li><a href="javascript:goto_page(240)"> Pure Resistance </a>
<li><a href="javascript:goto_page(241)"> Pure Reactance </a>
<li><a href="javascript:goto_page(242)"> Example: Power in an RC Circuit </a>
</ul> <li><a href="javascript:goto_page(243)"> Summary </a>
</ul> <li><a href="javascript:goto_page(244)"> Sinusoidal Steady State: Resonance </a>
<ul> <li><a href="javascript:goto_page(245)"> Parallel RLC, Sinusoidal Response </a>
<ul> <li><a href="javascript:goto_page(246)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(247)"> Particular Solution </a>
<li><a href="javascript:goto_page(248)"> Total Solution for the Parallel RLC Circuit </a>
</ul> <li><a href="javascript:goto_page(249)"> Frequency Response for Resonant Systems </a>
<ul> <li><a href="javascript:goto_page(250)"> The Resonant Region of the Frequency Response </a>
</ul> <li><a href="javascript:goto_page(251)"> Series RLC </a>
<li><a href="javascript:goto_page(252)"> The Bode Plot for Resonant Functions * </a>
<li><a href="javascript:goto_page(253)"> Filter Examples </a>
<ul> <li><a href="javascript:goto_page(254)"> Bandpass Filter </a>
<li><a href="javascript:goto_page(255)"> Lowpass Filter </a>
<li><a href="javascript:goto_page(256)"> Highpass Filter </a>
<li><a href="javascript:goto_page(257)"> Notch Filter </a>
</ul> <li><a href="javascript:goto_page(258)"> Stored Energy in a Resonant Circuit </a>
<li><a href="javascript:goto_page(259)"> Summary </a>
</ul> <li><a href="javascript:goto_page(260)"> The Operational Amplifier Abstraction </a>
<ul> <li><a href="javascript:goto_page(261)"> Introduction </a>
<ul> <li><a href="javascript:goto_page(262)"> Historical Perspective </a>
</ul> <li><a href="javascript:goto_page(263)"> Device Properties of the Operational Amplifier </a>
<ul> <li><a href="javascript:goto_page(264)"> The Op Amp Model </a>
</ul> <li><a href="javascript:goto_page(265)"> Simple Op Amp Circuits </a>
<ul> <li><a href="javascript:goto_page(266)"> The Non-inverting Op Amp </a>
<li><a href="javascript:goto_page(267)"> A Second Example: The Inverting Connection </a>
<li><a href="javascript:goto_page(268)"> Sensitivity </a>
<li><a href="javascript:goto_page(269)"> A Special Case: The Voltage Follower </a>
<li><a href="javascript:goto_page(270)"> An Additional Constraint: $v^+ - v^- \simeq 0$ </a>
</ul> <li><a href="javascript:goto_page(271)"> Input and Output Resistances </a>
<ul> <li><a href="javascript:goto_page(272)"> Output Resistance, Inverting Op Amp </a>
<li><a href="javascript:goto_page(273)"> Input Resistance, Inverting Connection </a>
<li><a href="javascript:goto_page(274)"> Input and Output R for Non-Inverting Op Amp </a>
<li><a href="javascript:goto_page(275)"> Generalization on Input Resistance * </a>
<li><a href="javascript:goto_page(276)"> Example: Op Amp Current Source </a>
</ul> <li><a href="javascript:goto_page(277)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(278)"> Adder </a>
<li><a href="javascript:goto_page(279)"> Subtracter </a>
</ul> <li><a href="javascript:goto_page(280)"> Op Amp RC Circuits </a>
<ul> <li><a href="javascript:goto_page(281)"> Op Amp Integrator </a>
<li><a href="javascript:goto_page(282)"> Op Amp Differentiator </a>
<li><a href="javascript:goto_page(283)"> An RC Active Filter </a>
<li><a href="javascript:goto_page(284)"> The RC Active Filter -- Impedance Analysis </a>
<li><a href="javascript:goto_page(285)"> Sallen-Key Filter </a>
</ul> <li><a href="javascript:goto_page(286)"> Op Amp in Saturation </a>
<ul> <li><a href="javascript:goto_page(287)"> Op Amp Integrator in Saturation </a>
</ul> <li><a href="javascript:goto_page(288)"> Positive Feedback </a>
<ul> <li><a href="javascript:goto_page(289)"> RC Oscillator </a>
</ul> <li><a href="javascript:goto_page(290)"> Two-ports* </a>
<li><a href="javascript:goto_page(291)"> Summary </a>
</ul> <li><a href="javascript:goto_page(292)"> Diodes </a>
<ul> <li><a href="javascript:goto_page(293)"> Introduction </a>
<li><a href="javascript:goto_page(294)"> Semiconductor Diode Characteristics </a>
<li><a href="javascript:goto_page(295)"> Analysis of Diode Circuits </a>
<ul> <li><a href="javascript:goto_page(296)"> Method of Assumed States </a>
</ul> <li><a href="javascript:goto_page(297)"> Nonlinear Analysis with RL and RC </a>
<ul> <li><a href="javascript:goto_page(298)"> Peak Detector</a>
<li><a href="javascript:goto_page(299)"> Example: Clamping Circuit </a>
<li><a href="javascript:goto_page(300)"> A Switched Power Supply Using a Diode </a>
</ul> <li><a href="javascript:goto_page(301)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(302)"> Piecewise Linear Example: Clipping Circuit </a>
<li><a href="javascript:goto_page(303)"> Exponentiation Circuit </a>
<li><a href="javascript:goto_page(304)"> Piecewise Linear Example: Limiter </a>
<li><a href="javascript:goto_page(305)"> Example: Full-Wave Diode Bridge </a>
<li><a href="javascript:goto_page(306)"> Incremental Example: Zener Diode Regulator </a>
<li><a href="javascript:goto_page(307)"> Incremental Example: Diode Attenuator </a>
</ul> <li><a href="javascript:goto_page(308)"> Summary </a>
</ul> <li><a href="javascript:goto_page(309)"> Maxwell's Equations and the LMD </a>
<ul> <li><a href="javascript:goto_page(310)"> The Lumped Matter Discipline </a>
<ul> <li><a href="javascript:goto_page(311)"> The First Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(312)"> The Second Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(313)"> The Third Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(314)"> The Lumped Matter Discipline Applied to Circuits </a>
</ul> <li><a href="javascript:goto_page(315)"> Deriving Kirchhoff's Laws </a>
<li><a href="javascript:goto_page(316)"> Deriving the Resistance of a Piece of Material </a>
</ul> <li><a href="javascript:goto_page(317)"> Trigonometric Functions \& Identities </a>
<ul> <li><a href="javascript:goto_page(318)"> Negative Arguments </a>
<li><a href="javascript:goto_page(319)"> Phase-Shifted Arguments </a>
<li><a href="javascript:goto_page(320)"> Sum and Difference Arguments </a>
<li><a href="javascript:goto_page(321)"> Products </a>
<li><a href="javascript:goto_page(322)"> Half-Angle \& Twice-Angle Arguments </a>
<li><a href="javascript:goto_page(323)"> Squares </a>
<li><a href="javascript:goto_page(324)"> Miscellaneous </a>
<li><a href="javascript:goto_page(325)"> Taylor Series Expansions </a>
<li><a href="javascript:goto_page(326)"> Relations to $e^j\theta}$ </a>
</ul> <li><a href="javascript:goto_page(327)"> Complex Numbers </a>
<ul> <li><a href="javascript:goto_page(328)"> Magnitude and Phase</a>
<li><a href="javascript:goto_page(329)"> Polar Representation </a>
<li><a href="javascript:goto_page(330)"> Addition and Subtraction </a>
<li><a href="javascript:goto_page(331)"> Multiplication and Division </a>
<li><a href="javascript:goto_page(332)"> Complex Conjugate </a>
<li><a href="javascript:goto_page(333)"> Properties of $e^j\theta}$ </a>
<li><a href="javascript:goto_page(334)"> Rotation </a>
<li><a href="javascript:goto_page(335)"> Complex Functions of Time </a>
<li><a href="javascript:goto_page(336)"> Numerical Examples </a>
</ul> <li><a href="javascript:goto_page(337)"> Solving Simultaneous Linear Equations </a>
......@@ -48,27 +48,7 @@ function next_page() {
<table>
<tr><td valign=top>
<ul id="booknav" class="treeview-booknav">
<li> <a href="javascript:goto_page(1)">Front material</a>
<ul>
<li> <a href="javascript:goto_page(5);">Contents</a>
<li> <a href="javascript:goto_page(23);">Preface</a>
</ul>
<li> <a href="javascript:goto_page(31);">Ch 1: The Circuit Abstraction</a>
<ul>
<li> Section 1
<li> Section 2
</ul>
<li> <a href="javascript:goto_page();">Ch 2: </a>
<li> <a href="javascript:goto_page();">Ch 3: </a>
<li> <a href="javascript:goto_page();">Ch 4: </a>
<li> <a href="javascript:goto_page();">Ch 5: </a>
<li> <a href="javascript:goto_page();">Ch 6: </a>
<li> <a href="javascript:goto_page();">Ch 7: </a>
<li> <a href="javascript:goto_page();">Ch 8: </a>
<li> <a href="javascript:goto_page();">Ch 9: </a>
<li> <a href="javascript:goto_page();">Ch 10: </a>
<li> <a href="javascript:goto_page();">Ch 11: </a>
<li> <a href="javascript:goto_page();">Ch 12: </a>
<%include file="book_toc.html" />
</ul>
</td><td width=10></td><td width=1 bgcolor=black></td><td>
<div align=center>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment