Commit 9fe32c6a by Piotr Mitros

Beginning refactoring grades out of profile view for use in gradebook

parent 870c16c7
...@@ -4,6 +4,7 @@ import logging ...@@ -4,6 +4,7 @@ import logging
import os import os
import re import re
import sys import sys
import urllib
from datetime import timedelta from datetime import timedelta
from lxml import etree from lxml import etree
...@@ -31,6 +32,9 @@ log = logging.getLogger("mitx.courseware") ...@@ -31,6 +32,9 @@ log = logging.getLogger("mitx.courseware")
timedelta_regex = re.compile(r'^((?P<days>\d+?) day(?:s?))?(\s)?((?P<hours>\d+?) hour(?:s?))?(\s)?((?P<minutes>\d+?) minute(?:s)?)?(\s)?((?P<seconds>\d+?) second(?:s)?)?$') timedelta_regex = re.compile(r'^((?P<days>\d+?) day(?:s?))?(\s)?((?P<hours>\d+?) hour(?:s?))?(\s)?((?P<minutes>\d+?) minute(?:s)?)?(\s)?((?P<seconds>\d+?) second(?:s)?)?$')
def format_url_params(params):
return [ urllib.quote(string.replace(' ','_')) for string in params ]
def parse_timedelta(time_str): def parse_timedelta(time_str):
parts = timedelta_regex.match(time_str) parts = timedelta_regex.match(time_str)
if not parts: if not parts:
......
import logging
import urllib
import courseware.content_parser as content_parser
from models import StudentModule
from django.conf import settings
from student.models import UserProfile
log = logging.getLogger("mitx.courseware")
def get_grade(user, problem, cache):
## HACK: assumes max score is fixed per problem
id = problem.get('id')
correct = 0
# If the ID is not in the cache, add the item
if id not in cache:
module = StudentModule(module_type = 'problem', # TODO: Move into StudentModule.__init__?
module_id = id,
student = user,
state = None,
grade = 0,
max_grade = None,
done = 'i')
cache[id] = module
# Grab the # correct from cache
if id in cache:
response = cache[id]
if response.grade!=None:
correct=response.grade
# Grab max grade from cache, or if it doesn't exist, compute and save to DB
if id in cache and response.max_grade != None:
total = response.max_grade
else:
total=courseware.modules.capa_module.Module(etree.tostring(problem), "id").max_score()
response.max_grade = total
response.save()
return (correct, total)
def gradesheet(student):
dom=content_parser.course_file(student)
course = dom.xpath('//course/@name')[0]
xmlChapters = dom.xpath('//course[@name=$course]/chapter', course=course)
responses=StudentModule.objects.filter(student=student)
response_by_id = {}
for response in responses:
response_by_id[response.module_id] = response
total_scores = {}
chapters=[]
for c in xmlChapters:
sections = []
chname=c.get('name')
for s in dom.xpath('//course[@name=$course]/chapter[@name=$chname]/section',
course=course, chname=chname):
problems=dom.xpath('//course[@name=$course]/chapter[@name=$chname]/section[@name=$section]//problem',
course=course, chname=chname, section=s.get('name'))
graded = True if s.get('graded') == "true" else False
scores=[]
if len(problems)>0:
for p in problems:
(correct,total) = get_grade(student, p, response_by_id)
# id = p.get('id')
# correct = 0
# if id in response_by_id:
# response = response_by_id[id]
# if response.grade!=None:
# correct=response.grade
# total=courseware.modules.capa_module.Module(etree.tostring(p), "id").max_score() # TODO: Add state. Not useful now, but maybe someday problems will have randomized max scores?
# print correct, total
if settings.GENERATE_PROFILE_SCORES:
if total > 1:
correct = random.randrange( max(total-2, 1) , total + 1 )
else:
correct = total
scores.append((int(correct),total, graded ))
section_total = (sum([score[0] for score in scores]),
sum([score[1] for score in scores]))
graded_total = (sum([score[0] for score in scores if score[2]]),
sum([score[1] for score in scores if score[2]]))
#Add the graded total to total_scores
format = s.get('format') if s.get('format') else ""
subtitle = s.get('subtitle') if s.get('subtitle') else format
if format and graded_total[1] > 0:
format_scores = total_scores[ format ] if format in total_scores else []
format_scores.append( graded_total + (s.get("name"),) )
total_scores[ format ] = format_scores
score={'section':s.get("name"),
'scores':scores,
'section_total' : section_total,
'format' : format,
'subtitle' : subtitle,
'due' : s.get("due") or "",
'graded' : graded,
}
sections.append(score)
chapters.append({'course':course,
'chapter' : c.get("name"),
'sections' : sections,})
def totalWithDrops(scores, drop_count):
#Note that this key will sort the list descending
sorted_scores = sorted( enumerate(scores), key=lambda x: -x[1]['percentage'] )
# A list of the indices of the dropped scores
dropped_indices = [score[0] for score in sorted_scores[-drop_count:]]
aggregate_score = 0
for index, score in enumerate(scores):
if index not in dropped_indices:
aggregate_score += score['percentage']
aggregate_score /= len(scores) - drop_count
return aggregate_score, dropped_indices
#Figure the homework scores
homework_scores = total_scores['Homework'] if 'Homework' in total_scores else []
homework_percentages = []
for i in range(12):
if i < len(homework_scores):
percentage = homework_scores[i][0] / float(homework_scores[i][1])
summary = "Homework {0} - {1} - {2:.0%} ({3:g}/{4:g})".format( i + 1, homework_scores[i][2] , percentage, homework_scores[i][0], homework_scores[i][1] )
else:
percentage = 0
summary = "Unreleased Homework {0} - 0% (?/?)".format(i + 1)
if settings.GENERATE_PROFILE_SCORES:
points_possible = random.randrange(10, 50)
points_earned = random.randrange(5, points_possible)
percentage = points_earned / float(points_possible)
summary = "Random Homework - {0:.0%} ({1:g}/{2:g})".format( percentage, points_earned, points_possible )
label = "HW {0:02d}".format(i + 1)
homework_percentages.append( {'percentage': percentage, 'summary': summary, 'label' : label} )
homework_total, homework_dropped_indices = totalWithDrops(homework_percentages, 2)
#Figure the lab scores
lab_scores = total_scores['Lab'] if 'Lab' in total_scores else []
lab_percentages = []
log.debug("lab_scores: {0}".format(lab_scores))
for i in range(12):
if i < len(lab_scores):
percentage = lab_scores[i][0] / float(lab_scores[i][1])
summary = "Lab {0} - {1} - {2:.0%} ({3:g}/{4:g})".format( i + 1, lab_scores[i][2] , percentage, lab_scores[i][0], lab_scores[i][1] )
else:
percentage = 0
summary = "Unreleased Lab {0} - 0% (?/?)".format(i + 1)
if settings.GENERATE_PROFILE_SCORES:
points_possible = random.randrange(10, 50)
points_earned = random.randrange(5, points_possible)
percentage = points_earned / float(points_possible)
summary = "Random Lab - {0:.0%} ({1:g}/{2:g})".format( percentage, points_earned, points_possible )
label = "Lab {0:02d}".format(i + 1)
lab_percentages.append( {'percentage': percentage, 'summary': summary, 'label' : label} )
lab_total, lab_dropped_indices = totalWithDrops(lab_percentages, 2)
#TODO: Pull this data about the midterm and final from the databse. It should be exactly similar to above, but we aren't sure how exams will be done yet.
midterm_score = ('?', '?')
midterm_percentage = 0
final_score = ('?', '?')
final_percentage = 0
if settings.GENERATE_PROFILE_SCORES:
midterm_score = (random.randrange(50, 150), 150)
midterm_percentage = midterm_score[0] / float(midterm_score[1])
final_score = (random.randrange(100, 300), 300)
final_percentage = final_score[0] / float(final_score[1])
grade_summary = [
{
'category': 'Homework',
'subscores' : homework_percentages,
'dropped_indices' : homework_dropped_indices,
'totalscore' : {'score' : homework_total, 'summary' : "Homework Average - {0:.0%}".format(homework_total)},
'totallabel' : 'HW Avg',
'weight' : 0.15,
},
{
'category': 'Labs',
'subscores' : lab_percentages,
'dropped_indices' : lab_dropped_indices,
'totalscore' : {'score' : lab_total, 'summary' : "Lab Average - {0:.0%}".format(lab_total)},
'totallabel' : 'Lab Avg',
'weight' : 0.15,
},
{
'category': 'Midterm',
'totalscore' : {'score' : midterm_percentage, 'summary' : "Midterm - {0:.0%} ({1}/{2})".format(midterm_percentage, midterm_score[0], midterm_score[1])},
'totallabel' : 'Midterm',
'weight' : 0.30,
},
{
'category': 'Final',
'totalscore' : {'score' : final_percentage, 'summary' : "Final - {0:.0%} ({1}/{2})".format(final_percentage, final_score[0], final_score[1])},
'totallabel' : 'Final',
'weight' : 0.40,
}
]
user_info = UserProfile.objects.get(user=student) # request.user.profile_cache #
context={'name':user_info.name,
'username':student.username,
'location':user_info.location,
'language':user_info.language,
'email':student.email,
'chapters':chapters,
'format_url_params' : content_parser.format_url_params,
'grade_summary' : grade_summary,
}
return context
...@@ -27,6 +27,8 @@ from student.models import UserProfile ...@@ -27,6 +27,8 @@ from student.models import UserProfile
import courseware.content_parser as content_parser import courseware.content_parser as content_parser
import courseware.modules.capa_module import courseware.modules.capa_module
import courseware.grades as grades
log = logging.getLogger("mitx.courseware") log = logging.getLogger("mitx.courseware")
etree.set_default_parser(etree.XMLParser(dtd_validation=False, load_dtd=False, etree.set_default_parser(etree.XMLParser(dtd_validation=False, load_dtd=False,
...@@ -34,38 +36,6 @@ etree.set_default_parser(etree.XMLParser(dtd_validation=False, load_dtd=False, ...@@ -34,38 +36,6 @@ etree.set_default_parser(etree.XMLParser(dtd_validation=False, load_dtd=False,
template_imports={'urllib':urllib} template_imports={'urllib':urllib}
def get_grade(user, problem, cache):
## HACK: assumes max score is fixed per problem
id = problem.get('id')
correct = 0
# If the ID is not in the cache, add the item
if id not in cache:
module = StudentModule(module_type = 'problem', # TODO: Move into StudentModule.__init__?
module_id = id,
student = user,
state = None,
grade = 0,
max_grade = None,
done = 'i')
cache[id] = module
# Grab the # correct from cache
if id in cache:
response = cache[id]
if response.grade!=None:
correct=response.grade
# Grab max grade from cache, or if it doesn't exist, compute and save to DB
if id in cache and response.max_grade != None:
total = response.max_grade
else:
total=courseware.modules.capa_module.Module(etree.tostring(problem), "id").max_score()
response.max_grade = total
response.save()
return (correct, total)
@cache_control(no_cache=True, no_store=True, must_revalidate=True) @cache_control(no_cache=True, no_store=True, must_revalidate=True)
def profile(request, student_id = None): def profile(request, student_id = None):
''' User profile. Show username, location, etc, as well as grades . ''' User profile. Show username, location, etc, as well as grades .
...@@ -81,202 +51,11 @@ def profile(request, student_id = None): ...@@ -81,202 +51,11 @@ def profile(request, student_id = None):
raise Http404 raise Http404
student = User.objects.get( id = int(student_id)) student = User.objects.get( id = int(student_id))
dom=content_parser.course_file(student) context = grades.gradesheet(student)
course = dom.xpath('//course/@name')[0] context.update({'csrf':csrf(request)['csrf_token']})
xmlChapters = dom.xpath('//course[@name=$course]/chapter', course=course)
responses=StudentModule.objects.filter(student=student)
response_by_id = {}
for response in responses:
response_by_id[response.module_id] = response
total_scores = {}
chapters=[]
for c in xmlChapters:
sections = []
chname=c.get('name')
for s in dom.xpath('//course[@name=$course]/chapter[@name=$chname]/section',
course=course, chname=chname):
problems=dom.xpath('//course[@name=$course]/chapter[@name=$chname]/section[@name=$section]//problem',
course=course, chname=chname, section=s.get('name'))
graded = True if s.get('graded') == "true" else False
scores=[]
if len(problems)>0:
for p in problems:
(correct,total) = get_grade(student, p, response_by_id)
# id = p.get('id')
# correct = 0
# if id in response_by_id:
# response = response_by_id[id]
# if response.grade!=None:
# correct=response.grade
# total=courseware.modules.capa_module.Module(etree.tostring(p), "id").max_score() # TODO: Add state. Not useful now, but maybe someday problems will have randomized max scores?
# print correct, total
if settings.GENERATE_PROFILE_SCORES:
if total > 1:
correct = random.randrange( max(total-2, 1) , total + 1 )
else:
correct = total
scores.append((int(correct),total, graded ))
section_total = (sum([score[0] for score in scores]),
sum([score[1] for score in scores]))
graded_total = (sum([score[0] for score in scores if score[2]]),
sum([score[1] for score in scores if score[2]]))
#Add the graded total to total_scores
format = s.get('format') if s.get('format') else ""
subtitle = s.get('subtitle') if s.get('subtitle') else format
if format and graded_total[1] > 0:
format_scores = total_scores[ format ] if format in total_scores else []
format_scores.append( graded_total + (s.get("name"),) )
total_scores[ format ] = format_scores
score={'section':s.get("name"),
'scores':scores,
'section_total' : section_total,
'format' : format,
'subtitle' : subtitle,
'due' : s.get("due") or "",
'graded' : graded,
}
sections.append(score)
chapters.append({'course':course,
'chapter' : c.get("name"),
'sections' : sections,})
def totalWithDrops(scores, drop_count):
#Note that this key will sort the list descending
sorted_scores = sorted( enumerate(scores), key=lambda x: -x[1]['percentage'] )
# A list of the indices of the dropped scores
dropped_indices = [score[0] for score in sorted_scores[-drop_count:]]
aggregate_score = 0
for index, score in enumerate(scores):
if index not in dropped_indices:
aggregate_score += score['percentage']
aggregate_score /= len(scores) - drop_count
return aggregate_score, dropped_indices
#Figure the homework scores
homework_scores = total_scores['Homework'] if 'Homework' in total_scores else []
homework_percentages = []
for i in range(12):
if i < len(homework_scores):
percentage = homework_scores[i][0] / float(homework_scores[i][1])
summary = "Homework {0} - {1} - {2:.0%} ({3:g}/{4:g})".format( i + 1, homework_scores[i][2] , percentage, homework_scores[i][0], homework_scores[i][1] )
else:
percentage = 0
summary = "Unreleased Homework {0} - 0% (?/?)".format(i + 1)
if settings.GENERATE_PROFILE_SCORES:
points_possible = random.randrange(10, 50)
points_earned = random.randrange(5, points_possible)
percentage = points_earned / float(points_possible)
summary = "Random Homework - {0:.0%} ({1:g}/{2:g})".format( percentage, points_earned, points_possible )
label = "HW {0:02d}".format(i + 1)
homework_percentages.append( {'percentage': percentage, 'summary': summary, 'label' : label} )
homework_total, homework_dropped_indices = totalWithDrops(homework_percentages, 2)
#Figure the lab scores
lab_scores = total_scores['Lab'] if 'Lab' in total_scores else []
lab_percentages = []
log.debug("lab_scores: {0}".format(lab_scores))
for i in range(12):
if i < len(lab_scores):
percentage = lab_scores[i][0] / float(lab_scores[i][1])
summary = "Lab {0} - {1} - {2:.0%} ({3:g}/{4:g})".format( i + 1, lab_scores[i][2] , percentage, lab_scores[i][0], lab_scores[i][1] )
else:
percentage = 0
summary = "Unreleased Lab {0} - 0% (?/?)".format(i + 1)
if settings.GENERATE_PROFILE_SCORES:
points_possible = random.randrange(10, 50)
points_earned = random.randrange(5, points_possible)
percentage = points_earned / float(points_possible)
summary = "Random Lab - {0:.0%} ({1:g}/{2:g})".format( percentage, points_earned, points_possible )
label = "Lab {0:02d}".format(i + 1)
lab_percentages.append( {'percentage': percentage, 'summary': summary, 'label' : label} )
lab_total, lab_dropped_indices = totalWithDrops(lab_percentages, 2)
#TODO: Pull this data about the midterm and final from the databse. It should be exactly similar to above, but we aren't sure how exams will be done yet.
midterm_score = ('?', '?')
midterm_percentage = 0
final_score = ('?', '?')
final_percentage = 0
if settings.GENERATE_PROFILE_SCORES:
midterm_score = (random.randrange(50, 150), 150)
midterm_percentage = midterm_score[0] / float(midterm_score[1])
final_score = (random.randrange(100, 300), 300)
final_percentage = final_score[0] / float(final_score[1])
grade_summary = [
{
'category': 'Homework',
'subscores' : homework_percentages,
'dropped_indices' : homework_dropped_indices,
'totalscore' : {'score' : homework_total, 'summary' : "Homework Average - {0:.0%}".format(homework_total)},
'totallabel' : 'HW Avg',
'weight' : 0.15,
},
{
'category': 'Labs',
'subscores' : lab_percentages,
'dropped_indices' : lab_dropped_indices,
'totalscore' : {'score' : lab_total, 'summary' : "Lab Average - {0:.0%}".format(lab_total)},
'totallabel' : 'Lab Avg',
'weight' : 0.15,
},
{
'category': 'Midterm',
'totalscore' : {'score' : midterm_percentage, 'summary' : "Midterm - {0:.0%} ({1}/{2})".format(midterm_percentage, midterm_score[0], midterm_score[1])},
'totallabel' : 'Midterm',
'weight' : 0.30,
},
{
'category': 'Final',
'totalscore' : {'score' : final_percentage, 'summary' : "Final - {0:.0%} ({1}/{2})".format(final_percentage, final_score[0], final_score[1])},
'totallabel' : 'Final',
'weight' : 0.40,
}
]
user_info = UserProfile.objects.get(user=student) # request.user.profile_cache #
context={'name':user_info.name,
'username':student.username,
'location':user_info.location,
'language':user_info.language,
'email':student.email,
'chapters':chapters,
'format_url_params' : format_url_params,
'grade_summary' : grade_summary,
'csrf':csrf(request)['csrf_token']
}
return render_to_response('profile.html', context) return render_to_response('profile.html', context)
def format_url_params(params):
return [ urllib.quote(string.replace(' ','_')) for string in params ]
def render_accordion(request,course,chapter,section): def render_accordion(request,course,chapter,section):
''' Draws navigation bar. Takes current position in accordion as ''' Draws navigation bar. Takes current position in accordion as
parameter. Returns (initialization_javascript, content)''' parameter. Returns (initialization_javascript, content)'''
...@@ -291,7 +70,7 @@ def render_accordion(request,course,chapter,section): ...@@ -291,7 +70,7 @@ def render_accordion(request,course,chapter,section):
context=dict([['active_chapter',active_chapter], context=dict([['active_chapter',active_chapter],
['toc',toc], ['toc',toc],
['course_name',course], ['course_name',course],
['format_url_params',format_url_params], ['format_url_params',content_parser.format_url_params],
['csrf',csrf(request)['csrf_token']]] + \ ['csrf',csrf(request)['csrf_token']]] + \
template_imports.items()) template_imports.items())
return {'init_js':render_to_string('accordion_init.js',context), return {'init_js':render_to_string('accordion_init.js',context),
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment