Commit 07f328f6 by Bridger Maxwell

merge

parents 7200ca0d 25cb4673
No preview for this file type
<li><a href="javascript:goto_page(1)"> The Circuit Abstraction </a>
<ul> <li><a href="javascript:goto_page(2)"> The Power of Abstraction </a> <li><a href="javascript:goto_page(27)"> The Circuit Abstraction </a>
<li><a href="javascript:goto_page(3)"> The Lumped Circuit Abstraction</a> <ul> <li><a href="javascript:goto_page(27)"> The Power of Abstraction </a>
<li><a href="javascript:goto_page(4)"> The Lumped Matter Discipline </a> <li><a href="javascript:goto_page(29)"> The Lumped Circuit Abstraction</a>
<li><a href="javascript:goto_page(5)"> Limitations of the Lumped Circuit Abstraction </a> <li><a href="javascript:goto_page(33)"> The Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(6)"> Practical Two-Terminal Elements </a> <li><a href="javascript:goto_page(37)"> Limitations of the Lumped Circuit Abstraction </a>
<ul> <li><a href="javascript:goto_page(7)"> Batteries </a> <li><a href="javascript:goto_page(39)"> Practical Two-Terminal Elements </a>
<li><a href="javascript:goto_page(8)"> Linear Resistors </a> <ul> <li><a href="javascript:goto_page(40)"> Batteries </a>
<li><a href="javascript:goto_page(9)"> Associated Variables Convention </a> <li><a href="javascript:goto_page(42)"> Linear Resistors </a>
</ul> <li><a href="javascript:goto_page(10)"> Ideal Two-Terminal Elements </a> <li><a href="javascript:goto_page(49)"> Associated Variables Convention </a>
<ul> <li><a href="javascript:goto_page(11)"> Ideal Voltage Sources, Wires and Resistors </a> </ul> <li><a href="javascript:goto_page(53)"> Ideal Two-Terminal Elements </a>
<li><a href="javascript:goto_page(12)"> Element Laws </a> <ul> <li><a href="javascript:goto_page(54)"> Ideal Voltage Sources, Wires and Resistors </a>
<li><a href="javascript:goto_page(13)"> The Current Source</a> <li><a href="javascript:goto_page(56)"> Element Laws </a>
</ul> <li><a href="javascript:goto_page(14)"> Modeling Physical Elements </a> <li><a href="javascript:goto_page(57)"> The Current Source</a>
<li><a href="javascript:goto_page(15)"> Signal Representation </a> </ul> <li><a href="javascript:goto_page(60)"> Modeling Physical Elements </a>
<ul> <li><a href="javascript:goto_page(16)"> Analog Signals</a> <li><a href="javascript:goto_page(64)"> Signal Representation </a>
<li><a href="javascript:goto_page(17)"> Digital Signals</a> <ul> <li><a href="javascript:goto_page(65)"> Analog Signals</a>
</ul> <li><a href="javascript:goto_page(18)"> Summary </a> <li><a href="javascript:goto_page(66)"> Digital Signals</a>
</ul> <li><a href="javascript:goto_page(19)"> Resistive Networks </a> </ul> <li><a href="javascript:goto_page(70)"> Summary </a>
<ul> <li><a href="javascript:goto_page(20)"> Terminology </a>
<li><a href="javascript:goto_page(21)"> Kirchhoff's Laws </a> </ul> <li><a href="javascript:goto_page(77)"> Resistive Networks </a>
<ul> <li><a href="javascript:goto_page(22)"> KCL </a> <ul> <li><a href="javascript:goto_page(78)"> Terminology </a>
<li><a href="javascript:goto_page(23)"> KVL </a> <li><a href="javascript:goto_page(79)"> Kirchhoff's Laws </a>
</ul> <li><a href="javascript:goto_page(24)"> Circuit Analysis: Basic Method </a> <ul> <li><a href="javascript:goto_page(80)"> KCL </a>
<ul> <li><a href="javascript:goto_page(25)"> Single-Resistor Circuits </a> <li><a href="javascript:goto_page(84)"> KVL </a>
<li><a href="javascript:goto_page(26)"> Quick Intuitive Analysis of Single-Resistor Circuits </a> </ul> <li><a href="javascript:goto_page(90)"> Circuit Analysis: Basic Method </a>
<li><a href="javascript:goto_page(27)"> Energy Conservation </a> <ul> <li><a href="javascript:goto_page(91)"> Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(28)"> Voltage and Current Dividers </a> <li><a href="javascript:goto_page(94)"> Quick Intuitive Analysis of Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(29)"> Voltage Dividers </a> <li><a href="javascript:goto_page(95)"> Energy Conservation </a>
<li><a href="javascript:goto_page(30)"> Resistors in Series </a> <li><a href="javascript:goto_page(97)"> Voltage and Current Dividers </a>
<li><a href="javascript:goto_page(31)"> Current Dividers </a> <li><a href="javascript:goto_page(99)"> Voltage Dividers </a>
<li><a href="javascript:goto_page(32)"> Resistors in Parallel </a> <li><a href="javascript:goto_page(100)"> Resistors in Series </a>
<li><a href="javascript:goto_page(33)"> A More Complex Circuit </a> <li><a href="javascript:goto_page(104)"> Current Dividers </a>
</ul> <li><a href="javascript:goto_page(34)"> Intuitive Method of Circuit Analysis </a> <li><a href="javascript:goto_page(108)"> Resistors in Parallel </a>
<li><a href="javascript:goto_page(35)"> More Examples </a> <li><a href="javascript:goto_page(108)"> A More Complex Circuit </a>
<li><a href="javascript:goto_page(36)"> Dependent Sources and the Control Concept </a> </ul> <li><a href="javascript:goto_page(131)"> Intuitive Method of Circuit Analysis </a>
<ul> <li><a href="javascript:goto_page(37)"> Circuits with Dependent Sources </a> <li><a href="javascript:goto_page(132)"> More Examples </a>
</ul> <li><a href="javascript:goto_page(38)"> A Formulation Suitable for a Computer Solution * </a> <li><a href="javascript:goto_page(122)"> Dependent Sources and the Control Concept </a>
<li><a href="javascript:goto_page(39)"> Summary </a> <ul> <li><a href="javascript:goto_page(126)"> Circuits with Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(40)"> Network Theorems </a> </ul> <li><a href="javascript:goto_page(131)"> A Formulation Suitable for a Computer Solution * </a>
<ul> <li><a href="javascript:goto_page(41)"> Introduction </a> <li><a href="javascript:goto_page(132)"> Summary </a>
<li><a href="javascript:goto_page(42)"> The Node Voltage </a>
<li><a href="javascript:goto_page(43)"> The Node Method </a> </ul> <li><a href="javascript:goto_page(143)"> Network Theorems </a>
<ul> <li><a href="javascript:goto_page(44)"> Node Method: A Second Example </a> <ul> <li><a href="javascript:goto_page(143)"> Introduction </a>
<li><a href="javascript:goto_page(45)"> Floating Independent Voltage Sources </a> <li><a href="javascript:goto_page(143)"> The Node Voltage </a>
<li><a href="javascript:goto_page(46)"> Dependent Sources and the Node Method </a> <li><a href="javascript:goto_page(149)"> The Node Method </a>
<li><a href="javascript:goto_page(47)"> The Conductance and Source Matrices *}</a> <ul> <li><a href="javascript:goto_page(154)"> Node Method: A Second Example </a>
</ul> <li><a href="javascript:goto_page(48)"> Loop Method * </a> <li><a href="javascript:goto_page(159)"> Floating Independent Voltage Sources </a>
<li><a href="javascript:goto_page(49)"> Superposition </a> <li><a href="javascript:goto_page(163)"> Dependent Sources and the Node Method </a>
<ul> <li><a href="javascript:goto_page(50)"> Superposition Rules for Dependent Sources </a> <li><a href="javascript:goto_page(169)"> The Conductance and Source Matrices *}</a>
</ul> <li><a href="javascript:goto_page(51)"> Th\'e}venin's Theorem and Norton's Theorem </a> </ul> <li><a href="javascript:goto_page(169)"> Loop Method * </a>
<ul> <li><a href="javascript:goto_page(52)"> The Th\'e}venin Equivalent Network </a> <li><a href="javascript:goto_page(169)"> Superposition </a>
<li><a href="javascript:goto_page(53)"> The Norton Equivalent Network </a> <ul> <li><a href="javascript:goto_page(176)"> Superposition Rules for Dependent Sources </a>
<li><a href="javascript:goto_page(54)"> More Examples </a> </ul> <li><a href="javascript:goto_page(182)"> Th\'e}venin's Theorem and Norton's Theorem </a>
</ul> <li><a href="javascript:goto_page(55)"> Summary </a> <ul> <li><a href="javascript:goto_page(182)"> The Th\'e}venin Equivalent Network </a>
</ul> <li><a href="javascript:goto_page(56)"> Analysis of Nonlinear Circuits </a> <li><a href="javascript:goto_page(192)"> The Norton Equivalent Network </a>
<ul> <li><a href="javascript:goto_page(57)"> Introduction to Nonlinear Elements </a> <li><a href="javascript:goto_page(195)"> More Examples </a>
<li><a href="javascript:goto_page(58)"> Analytical Solutions </a> </ul> <li><a href="javascript:goto_page(201)"> Summary </a>
<li><a href="javascript:goto_page(59)"> Graphical Analysis </a>
<li><a href="javascript:goto_page(60)"> Piecewise Linear Analysis </a> </ul> <li><a href="javascript:goto_page(217)"> Analysis of Nonlinear Circuits </a>
<ul> <li><a href="javascript:goto_page(61)"> Improved Piecewise Linear Models for Nonlinear Elements * </a> <ul> <li><a href="javascript:goto_page(217)"> Introduction to Nonlinear Elements </a>
</ul> <li><a href="javascript:goto_page(62)"> Incremental Analysis </a> <li><a href="javascript:goto_page(221)"> Analytical Solutions </a>
<li><a href="javascript:goto_page(63)"> Summary </a> <li><a href="javascript:goto_page(227)"> Graphical Analysis </a>
</ul> <li><a href="javascript:goto_page(64)"> The Digital Abstraction </a> <li><a href="javascript:goto_page(230)"> Piecewise Linear Analysis </a>
<ul> <li><a href="javascript:goto_page(65)"> Voltage Levels and the Static Discipline </a> <ul> <li><a href="javascript:goto_page(238)"> Improved Piecewise Linear Models for Nonlinear Elements * </a>
<li><a href="javascript:goto_page(66)"> Boolean Logic </a> </ul> <li><a href="javascript:goto_page(238)"> Incremental Analysis </a>
<li><a href="javascript:goto_page(67)"> Combinational Gates </a> <li><a href="javascript:goto_page(253)"> Summary </a>
<li><a href="javascript:goto_page(68)"> Standard Sum-of-Products Representation </a>
<li><a href="javascript:goto_page(69)"> Simplifying Logic Expressions * </a> </ul> <li><a href="javascript:goto_page(267)"> The Digital Abstraction </a>
<li><a href="javascript:goto_page(70)"> Number Representation </a> <ul> <li><a href="javascript:goto_page(269)"> Voltage Levels and the Static Discipline </a>
<li><a href="javascript:goto_page(71)"> Summary </a> <li><a href="javascript:goto_page(256+24)"> Boolean Logic </a>
</ul> <li><a href="javascript:goto_page(72)"> The MOSFET Switch </a> <li><a href="javascript:goto_page(258+24)"> Combinational Gates </a>
<ul> <li><a href="javascript:goto_page(73)"> The Switch </a> <li><a href="javascript:goto_page(261+24)"> Standard Sum-of-Products Representation </a>
<li><a href="javascript:goto_page(74)"> Logic Functions Using Switches </a> <li><a href="javascript:goto_page(262+24)"> Simplifying Logic Expressions * </a>
<li><a href="javascript:goto_page(75)"> The MOSFET Device and Its S Model </a> <li><a href="javascript:goto_page(267+24)"> Number Representation </a>
<li><a href="javascript:goto_page(76)"> MOSFET Switch Implementation of Logic Gates </a> <li><a href="javascript:goto_page(274+24)"> Summary </a>
<li><a href="javascript:goto_page(77)"> Static Analysis Using the S Model </a>
<li><a href="javascript:goto_page(78)"> The SR Model of the MOSFET </a> </ul> <li><a href="javascript:goto_page(285+24)"> The MOSFET Switch </a>
<li><a href="javascript:goto_page(79)"> Physical Structure of the MOSFET $*$ </a> <ul> <li><a href="javascript:goto_page(285+24)"> The Switch </a>
<li><a href="javascript:goto_page(80)"> Static Analysis Using the SR Model </a> <li><a href="javascript:goto_page(288+24)"> Logic Functions Using Switches </a>
<ul> <li><a href="javascript:goto_page(81)"> Static Analysis of the \it NAND} Gate Using the SR Model </a> <li><a href="javascript:goto_page(298+24)"> The MOSFET Device and Its S Model </a>
</ul> <li><a href="javascript:goto_page(82)"> Signal Restoration </a> <li><a href="javascript:goto_page(291+24)"> MOSFET Switch Implementation of Logic Gates </a>
<ul> <li><a href="javascript:goto_page(83)"> Signal Restoration and Gain </a> <li><a href="javascript:goto_page(296+24)"> Static Analysis Using the S Model </a>
<li><a href="javascript:goto_page(84)"> Signal Restoration and Nonlinearity </a> <li><a href="javascript:goto_page(300+24)"> The SR Model of the MOSFET </a>
<li><a href="javascript:goto_page(85)"> Buffer Characteristics and the Static Discipline </a> <li><a href="javascript:goto_page(301+24)"> Physical Structure of the MOSFET $*$ </a>
<li><a href="javascript:goto_page(86)"> Inverter Transfer Characteristics and the Static Discipline </a> <li><a href="javascript:goto_page(306+24)"> Static Analysis Using the SR Model </a>
</ul> <li><a href="javascript:goto_page(87)"> Power Consumption in Logic Gates </a> <ul> <li><a href="javascript:goto_page(311+24)"> Static Analysis of the \it NAND} Gate Using the SR Model </a>
<li><a href="javascript:goto_page(88)"> Active Pullups </a> </ul> <li><a href="javascript:goto_page(314+24)"> Signal Restoration </a>
<li><a href="javascript:goto_page(89)"> Summary </a> <ul> <li><a href="javascript:goto_page(314+24)"> Signal Restoration and Gain </a>
</ul> <li><a href="javascript:goto_page(90)"> The MOSFET Amplifier </a> <li><a href="javascript:goto_page(317+24)"> Signal Restoration and Nonlinearity </a>
<ul> <li><a href="javascript:goto_page(91)"> Signal Amplification </a> <li><a href="javascript:goto_page(318+24)"> Buffer Characteristics and the Static Discipline </a>
<li><a href="javascript:goto_page(92)"> Review of Dependent Sources </a> <li><a href="javascript:goto_page(319+24)"> Inverter Transfer Characteristics and the Static Discipline </a>
<li><a href="javascript:goto_page(93)"> Actual MOSFET Characteristics</a> </ul> <li><a href="javascript:goto_page(320+24)"> Power Consumption in Logic Gates </a>
<li><a href="javascript:goto_page(94)"> The Switch Current Source (SCS) MOSFET Model </a> <li><a href="javascript:goto_page(321+24)"> Active Pullups </a>
<li><a href="javascript:goto_page(95)"> The MOSFET Amplifier </a> <li><a href="javascript:goto_page(322+24)"> Summary </a>
<ul> <li><a href="javascript:goto_page(96)"> Biasing the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(97)"> The Amplifier Abstraction and the Saturation Discipline </a> </ul> <li><a href="javascript:goto_page(331+24)"> The MOSFET Amplifier </a>
</ul> <li><a href="javascript:goto_page(98)"> Large Signal Analysis of the MOSFET Amplifier </a> <ul> <li><a href="javascript:goto_page(332+24)"> Signal Amplification </a>
<ul> <li><a href="javascript:goto_page(99)"> $v_IN}$ versus $v_OUT}$ in the Saturation Region </a> <li><a href="javascript:goto_page(332+24)"> Review of Dependent Sources </a>
<li><a href="javascript:goto_page(100)"> Valid Input and Output Voltage Ranges </a> <li><a href="javascript:goto_page(335+24)"> Actual MOSFET Characteristics</a>
<li><a href="javascript:goto_page(101)"> Lowest Valid Input Voltage </a> <li><a href="javascript:goto_page(340+24)"> The Switch Current Source (SCS) MOSFET Model </a>
<li><a href="javascript:goto_page(102)"> Highest Valid Input Voltage </a> <li><a href="javascript:goto_page(344+24)"> The MOSFET Amplifier </a>
</ul> <li><a href="javascript:goto_page(103)"> Operating Point Selection </a> <ul> <li><a href="javascript:goto_page(349+24)"> Biasing the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(104)"> Switch Unified (SU) MOSFET Model $*$ </a> <li><a href="javascript:goto_page(352+24)"> The Amplifier Abstraction and the Saturation Discipline </a>
<li><a href="javascript:goto_page(105)"> Summary </a> </ul> <li><a href="javascript:goto_page(353+24)"> Large Signal Analysis of the MOSFET Amplifier </a>
</ul> <li><a href="javascript:goto_page(106)"> The Small Signal Model </a> <ul> <li><a href="javascript:goto_page(353+24)"> $v_IN}$ versus $v_OUT}$ in the Saturation Region </a>
<ul> <li><a href="javascript:goto_page(107)"> Overview of the Nonlinear MOSFET Amplifier </a> <li><a href="javascript:goto_page(356+24)"> Valid Input and Output Voltage Ranges </a>
<li><a href="javascript:goto_page(108)"> The Small Signal Model </a> <li><a href="javascript:goto_page(363+24)"> Alternative Method for Valid Input and Output Voltage Ranges </a>z
<ul> <li><a href="javascript:goto_page(109)"> Small Signal Circuit Representation </a> </ul> <li><a href="javascript:goto_page(385+24)"> Operating Point Selection </a>
<li><a href="javascript:goto_page(110)"> Small Signal Circuit for the MOSFET Amplifier </a> <li><a href="javascript:goto_page(386+24)"> Switch Unified (SU) MOSFET Model $*$ </a>
<li><a href="javascript:goto_page(111)"> Selecting an Operating Point </a> <li><a href="javascript:goto_page(389+24)"> Summary </a>
<li><a href="javascript:goto_page(112)"> Input and Output Resistance, Current and Power Gain </a>
<li><a href="javascript:goto_page(113)"> Input Resistance $r_i}$ </a> </ul> <li><a href="javascript:goto_page(405+24)"> The Small Signal Model </a>
<li><a href="javascript:goto_page(114)"> Output Resistance $r_out}$ </a> <ul> <li><a href="javascript:goto_page(405+24)"> Overview of the Nonlinear MOSFET Amplifier </a>
<li><a href="javascript:goto_page(115)"> Current Gain </a> <li><a href="javascript:goto_page(405+24)"> The Small Signal Model </a>
<li><a href="javascript:goto_page(116)"> Power Gain </a> <ul> <li><a href="javascript:goto_page(413+24)"> Small Signal Circuit Representation </a>
</ul> <li><a href="javascript:goto_page(117)"> Summary </a> <li><a href="javascript:goto_page(418+24)"> Small Signal Circuit for the MOSFET Amplifier </a>
</ul> <li><a href="javascript:goto_page(118)"> Energy Storage Elements </a> <li><a href="javascript:goto_page(420+24)"> Selecting an Operating Point </a>
<ul> <li><a href="javascript:goto_page(119)"> Constitutive Laws </a> <li><a href="javascript:goto_page(423+24)"> Input and Output Resistance, Current and Power Gain </a>
<ul> <li><a href="javascript:goto_page(120)"> Capacitors </a> </ul> <li><a href="javascript:goto_page(447+24)"> Summary </a>
<li><a href="javascript:goto_page(121)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(122)"> Series \& Parallel Connections </a> </ul> <li><a href="javascript:goto_page(457+24)"> Energy Storage Elements </a>
<ul> <li><a href="javascript:goto_page(123)"> Capacitors </a> <ul> <li><a href="javascript:goto_page(461+24)"> Constitutive Laws </a>
<li><a href="javascript:goto_page(124)"> Inductors </a> <ul> <li><a href="javascript:goto_page(461+24)"> Capacitors </a>
</ul> <li><a href="javascript:goto_page(125)"> Special Examples </a> <li><a href="javascript:goto_page(466+24)"> Inductors </a>
<ul> <li><a href="javascript:goto_page(126)"> MOSFET Gate Capacitance </a> </ul> <li><a href="javascript:goto_page(470+24)"> Series \& Parallel Connections </a>
<li><a href="javascript:goto_page(127)"> Wiring Loop Inductance </a> <ul> <li><a href="javascript:goto_page(471+24)"> Capacitors </a>
<li><a href="javascript:goto_page(128)"> IC Wiring Capacitance and Inductance </a> <li><a href="javascript:goto_page(472+24)"> Inductors </a>
<li><a href="javascript:goto_page(129)"> Transformers * </a> </ul> <li><a href="javascript:goto_page(473+24)"> Special Examples </a>
</ul> <li><a href="javascript:goto_page(130)"> Simple Circuit Examples </a> <ul> <li><a href="javascript:goto_page(473+24)"> MOSFET Gate Capacitance </a>
<ul> <li><a href="javascript:goto_page(131)"> Sinusoidal Inputs * </a> <li><a href="javascript:goto_page(476+24)"> Wiring Loop Inductance </a>
<li><a href="javascript:goto_page(132)"> Step Inputs </a> <li><a href="javascript:goto_page(477+24)"> IC Wiring Capacitance and Inductance </a>
<li><a href="javascript:goto_page(133)"> Impulse Inputs </a> <li><a href="javascript:goto_page(478+24)"> Transformers * </a>
<li><a href="javascript:goto_page(134)"> Role Reversal$*$ </a> </ul> <li><a href="javascript:goto_page(480+24)"> Simple Circuit Examples </a>
</ul> <li><a href="javascript:goto_page(135)"> Energy, Charge and Flux Conservation </a> <ul> <li><a href="javascript:goto_page(482+24)"> Sinusoidal Inputs * </a>
<li><a href="javascript:goto_page(136)"> Summary </a> <li><a href="javascript:goto_page(482+24)"> Step Inputs </a>
</ul> <li><a href="javascript:goto_page(137)"> First-order Transients </a> <li><a href="javascript:goto_page(488+24)"> Impulse Inputs </a>
<ul> <li><a href="javascript:goto_page(138)"> Analysis of RC Circuits </a> <li><a href="javascript:goto_page(489+24)"> Role Reversal$*$ </a>
<ul> <li><a href="javascript:goto_page(139)"> Parallel RC Circuit, Step Input </a> </ul> <li><a href="javascript:goto_page(489+24)"> Energy, Charge and Flux Conservation </a>
<li><a href="javascript:goto_page(140)"> RC Discharge Transient </a> <li><a href="javascript:goto_page(492+24)"> Summary </a>
<li><a href="javascript:goto_page(141)"> Properties of Exponentials </a>
<li><a href="javascript:goto_page(142)"> Series RC Circuit, Step Input </a> </ul> <li><a href="javascript:goto_page(503+24)"> First-order Transients </a>
<li><a href="javascript:goto_page(143)"> Series RC Circuit, Square Wave Input </a> <ul> <li><a href="javascript:goto_page(504+24)"> Analysis of RC Circuits </a>
</ul> <li><a href="javascript:goto_page(144)"> Analysis of RL Circuits </a> <ul> <li><a href="javascript:goto_page(504+24)"> Parallel RC Circuit, Step Input </a>
<ul> <li><a href="javascript:goto_page(145)"> Series RL Circuit, Step Input </a> <li><a href="javascript:goto_page(509+24)"> RC Discharge Transient </a>
</ul> <li><a href="javascript:goto_page(146)"> Intuitive Analysis </a> <li><a href="javascript:goto_page(511+24)"> Series RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(147)"> Propagation Delay and the Digital Abstraction </a> <li><a href="javascript:goto_page(515+24)"> Series RC Circuit, Square Wave Input </a>
<ul> <li><a href="javascript:goto_page(148)"> Definitions </a> </ul> <li><a href="javascript:goto_page(517+24)"> Analysis of RL Circuits </a>
<li><a href="javascript:goto_page(149)"> Computing $t_pd}$ from the SRC MOSFET Model </a> <ul> <li><a href="javascript:goto_page(517+24)"> Series RL Circuit, Step Input </a>
<li><a href="javascript:goto_page(150)"> Computing $t_pd,0 \rightarrow 1}$ </a> </ul> <li><a href="javascript:goto_page(520+24)"> Intuitive Analysis </a>
<li><a href="javascript:goto_page(151)"> Computing $t_pd,1 \rightarrow 0}$ </a> <li><a href="javascript:goto_page(525+24)"> Propagation Delay and the Digital Abstraction </a>
<li><a href="javascript:goto_page(152)"> Computing $t_pd}$ </a> <ul> <li><a href="javascript:goto_page(527+24)"> Definitions </a>
</ul> <li><a href="javascript:goto_page(153)"> State and State Variables * </a> <li><a href="javascript:goto_page(529+24)"> Computing $t_pd}$ from the SRC MOSFET Model </a>
<ul> <li><a href="javascript:goto_page(154)"> The Concept of State </a> </ul> <li><a href="javascript:goto_page(538+24)"> State and State Variables * </a>
<li><a href="javascript:goto_page(155)"> Computer Analysis using the State Equation </a> <ul> <li><a href="javascript:goto_page(538+24)"> The Concept of State </a>
<li><a href="javascript:goto_page(156)"> Zero-input and Zero-state Response </a> <li><a href="javascript:goto_page(540+24)"> Computer Analysis using the State Equation </a>
<li><a href="javascript:goto_page(157)"> Solution by Integrating Factors* </a> <li><a href="javascript:goto_page(541+24)"> Zero-input and Zero-state Response </a>
</ul> <li><a href="javascript:goto_page(158)"> Additional Examples </a> <li><a href="javascript:goto_page(544+24)"> Solution by Integrating Factors* </a>
<ul> <li><a href="javascript:goto_page(159)"> Effect of Wire Inductance in Digital Circuits </a> </ul> <li><a href="javascript:goto_page(545+24)"> Additional Examples </a>
<li><a href="javascript:goto_page(160)"> Ramp Inputs and Linearity </a> <ul> <li><a href="javascript:goto_page(545+24)"> Effect of Wire Inductance in Digital Circuits </a>
<li><a href="javascript:goto_page(161)"> Response of an RC Circuit to Short Pulses and the Impulse Response </a> <li><a href="javascript:goto_page(545+24)"> Ramp Inputs and Linearity </a>
<li><a href="javascript:goto_page(162)"> Intuitive Method for the Impulse Response </a> <li><a href="javascript:goto_page(550+24)"> Response of an RC Circuit to Short Pulses and the Impulse Response </a>
<li><a href="javascript:goto_page(163)"> Clock Signals and Clock Fanout </a> <li><a href="javascript:goto_page(553+24)"> Intuitive Method for the Impulse Response </a>
<li><a href="javascript:goto_page(164)"> RC Response to Decaying Exponential * </a> <li><a href="javascript:goto_page(554+24)"> Clock Signals and Clock Fanout </a>
<li><a href="javascript:goto_page(165)"> Series RL Circuit with Sinewave Input </a> <li><a href="javascript:goto_page(558+24)"> RC Response to Decaying Exponential * </a>
</ul> <li><a href="javascript:goto_page(166)"> Digital Memory </a> <li><a href="javascript:goto_page(558+24)"> Series RL Circuit with Sinewave Input </a>
<ul> <li><a href="javascript:goto_page(167)"> The Concept of Digital State </a> </ul> <li><a href="javascript:goto_page(561+24)"> Digital Memory </a>
<li><a href="javascript:goto_page(168)"> An Abstract Digital Memory Element </a> <ul> <li><a href="javascript:goto_page(561+24)"> The Concept of Digital State </a>
<li><a href="javascript:goto_page(169)"> Design of the Digital Memory Element </a> <li><a href="javascript:goto_page(562+24)"> An Abstract Digital Memory Element </a>
<li><a href="javascript:goto_page(170)"> A Static Memory Element </a> <li><a href="javascript:goto_page(563+24)"> Design of the Digital Memory Element </a>
</ul> <li><a href="javascript:goto_page(171)"> Summary </a> <li><a href="javascript:goto_page(567+24)"> A Static Memory Element </a>
</ul> <li><a href="javascript:goto_page(172)"> Energy and Power in Digital Circuits </a> </ul> <li><a href="javascript:goto_page(568+24)"> Summary </a>
<ul> <li><a href="javascript:goto_page(173)"> Power and Energy Relations for a Simple RC Circuit </a>
<li><a href="javascript:goto_page(174)"> Average Power in an RC Circuit </a> </ul> <li><a href="javascript:goto_page(595+24)"> Energy and Power in Digital Circuits </a>
<ul> <li><a href="javascript:goto_page(175)"> Energy Dissipated during Interval $T_1$ </a> <ul> <li><a href="javascript:goto_page(595+24)"> Power and Energy Relations for a Simple RC Circuit </a>
<li><a href="javascript:goto_page(176)"> Energy Dissipated during Interval $T_2$ </a> <li><a href="javascript:goto_page(597+24)"> Average Power in an RC Circuit </a>
<li><a href="javascript:goto_page(177)"> Total Energy Dissipated </a> <ul> <li><a href="javascript:goto_page(599+24)"> Energy Dissipated during Interval $T_1$ </a>
</ul> <li><a href="javascript:goto_page(178)"> Power Dissipation in Logic Gates </a> <li><a href="javascript:goto_page(601+24)"> Energy Dissipated during Interval $T_2$ </a>
<ul> <li><a href="javascript:goto_page(179)"> Static Power Dissipation </a> <li><a href="javascript:goto_page(603+24)"> Total Energy Dissipated </a>
<li><a href="javascript:goto_page(180)"> Total Power Dissipation </a> </ul> <li><a href="javascript:goto_page(604+24)"> Power Dissipation in Logic Gates </a>
<li><a href="javascript:goto_page(181)"> Energy Dissipated during Interval $T_1$ </a> <ul> <li><a href="javascript:goto_page(604+24)"> Static Power Dissipation </a>
<li><a href="javascript:goto_page(182)"> Energy Dissipated during Interval $T_2$ </a> <li><a href="javascript:goto_page(605+24)"> Total Power Dissipation </a>
<li><a href="javascript:goto_page(183)"> Total Energy Dissipated </a> </ul> <li><a href="javascript:goto_page(611+24)"> NMOS Logic </a>
</ul> <li><a href="javascript:goto_page(184)"> NMOS Logic </a> <li><a href="javascript:goto_page(611+24)"> CMOS Logic </a>
<li><a href="javascript:goto_page(185)"> CMOS Logic </a> <ul> <li><a href="javascript:goto_page(616+24)"> CMOS Logic Gate Design </a>
<ul> <li><a href="javascript:goto_page(186)"> CMOS Logic Gate Design </a> </ul> <li><a href="javascript:goto_page(618+24)"> Summary </a>
<li><a href="javascript:goto_page(187)"> CMOS NAND Gate </a>
<li><a href="javascript:goto_page(188)"> CMOS NOR Gate </a> </ul> <li><a href="javascript:goto_page(625+24)"> Transients in Second Order Circuits </a>
<li><a href="javascript:goto_page(189)"> Other Logic Functions </a> <ul> <li><a href="javascript:goto_page(627+24)"> Undriven LC Circuit </a>
</ul> <li><a href="javascript:goto_page(190)"> Summary </a> <li><a href="javascript:goto_page(640+24)"> Undriven, Series RLC Circuit </a>
</ul> <li><a href="javascript:goto_page(191)"> Transients in Second Order Circuits </a> <ul> <li><a href="javascript:goto_page(644+24)"> Under-Damped Dynamics </a>
<ul> <li><a href="javascript:goto_page(192)"> Undriven LC Circuit </a> <li><a href="javascript:goto_page(648+24)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(193)"> Undriven, Series RLC Circuit </a> <li><a href="javascript:goto_page(649+24)"> Critically-Damped Dynamics </a>
<ul> <li><a href="javascript:goto_page(194)"> Under-Damped Dynamics </a> </ul> <li><a href="javascript:goto_page(651+24)"> Stored Energy in Transient, Series RLC Circuit </a>
<li><a href="javascript:goto_page(195)"> Over-Damped Dynamics </a> <li><a href="javascript:goto_page(654+24)"> Undriven, Parallel RLC Circuit * </a>
<li><a href="javascript:goto_page(196)"> Critically-Damped Dynamics </a> <ul> <li><a href="javascript:goto_page(654+24)"> Under-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(197)"> Stored Energy in Transient, Series RLC Circuit </a> <li><a href="javascript:goto_page(654+24)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(198)"> Undriven, Parallel RLC Circuit * </a> <li><a href="javascript:goto_page(654+24)"> Critically-Damped Dynamics </a>
<ul> <li><a href="javascript:goto_page(199)"> Under-Damped Dynamics </a> </ul> <li><a href="javascript:goto_page(654+24)"> Driven, Series RLC Circuit </a>
<li><a href="javascript:goto_page(200)"> Over-Damped Dynamics </a> <ul> <li><a href="javascript:goto_page(657+24)"> Step Response </a>
<li><a href="javascript:goto_page(201)"> Critically-Damped Dynamics </a> <li><a href="javascript:goto_page(661+24)"> Impulse Response * </a>
</ul> <li><a href="javascript:goto_page(202)"> Driven, Series RLC Circuit </a> </ul> <li><a href="javascript:goto_page(678+24)"> Driven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(203)"> Step Response </a> <ul> <li><a href="javascript:goto_page(678+24)"> Step Response </a>
<li><a href="javascript:goto_page(204)"> Impulse Response * </a> <li><a href="javascript:goto_page(678+24)"> Impulse Response </a>
</ul> <li><a href="javascript:goto_page(205)"> Driven, Parallel RLC Circuit * </a> </ul> <li><a href="javascript:goto_page(678+24)"> Intuitive Analysis of Second-Order Circuits </a>
<ul> <li><a href="javascript:goto_page(206)"> Step Response </a> <li><a href="javascript:goto_page(684+24)"> Two-Capacitor Or Two-Inductor Circuits </a>
<li><a href="javascript:goto_page(207)"> Impulse Response </a> <li><a href="javascript:goto_page(689+24)"> State-Variable Method * </a>
</ul> <li><a href="javascript:goto_page(208)"> Intuitive Analysis of Second-Order Circuits </a> <li><a href="javascript:goto_page(691+24)"> State-Space Analysis * </a>
<li><a href="javascript:goto_page(209)"> Two-Capacitor Or Two-Inductor Circuits </a> <ul> <li><a href="javascript:goto_page(691+24)"> Numerical Solution * </a>
<li><a href="javascript:goto_page(210)"> State-Variable Method * </a> </ul> <li><a href="javascript:goto_page(691+24)"> Higher-Order Circuits* </a>
<li><a href="javascript:goto_page(211)"> State-Space Analysis * </a> <li><a href="javascript:goto_page(692+24)"> Summary </a>
<ul> <li><a href="javascript:goto_page(212)"> Numerical Solution * </a>
</ul> <li><a href="javascript:goto_page(213)"> Higher-Order Circuits* </a> </ul> <li><a href="javascript:goto_page(703+24)"> Sinusoidal Steady State </a>
<li><a href="javascript:goto_page(214)"> Summary </a> <ul> <li><a href="javascript:goto_page(703+24)"> Introduction </a>
</ul> <li><a href="javascript:goto_page(215)"> Sinusoidal Steady State </a> <li><a href="javascript:goto_page(706+24)"> Analysis using Complex Exponential Drive </a>
<ul> <li><a href="javascript:goto_page(216)"> Introduction </a> <ul> <li><a href="javascript:goto_page(706+24)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(217)"> Analysis using Complex Exponential Drive </a> <li><a href="javascript:goto_page(707+24)"> Particular Solution </a>
<ul> <li><a href="javascript:goto_page(218)"> Homogeneous Solution </a> <li><a href="javascript:goto_page(710+24)"> Complete Solution </a>
<li><a href="javascript:goto_page(219)"> Particular Solution </a> <li><a href="javascript:goto_page(710+24)"> Sinusoidal Steady State Response </a>
<li><a href="javascript:goto_page(220)"> Complete Solution </a> </ul> <li><a href="javascript:goto_page(712+24)"> The Boxes: Impedance </a>
<li><a href="javascript:goto_page(221)"> Sinusoidal Steady State Response </a> <ul> <li><a href="javascript:goto_page(718+24)"> Example: Series RL Circuit </a>
</ul> <li><a href="javascript:goto_page(222)"> The Boxes: Impedance </a> <li><a href="javascript:goto_page(722+24)"> Example: Another RC Circuit </a>
<ul> <li><a href="javascript:goto_page(223)"> Example: Series RL Circuit </a> <li><a href="javascript:goto_page(724+24)"> Example: RC Circuit with Two Capacitors </a>
<li><a href="javascript:goto_page(224)"> Example: Another RC Circuit </a> <li><a href="javascript:goto_page(729+24)"> Example: Analysis of Small Signal Amplifier with Capacitive Load </a>
<li><a href="javascript:goto_page(225)"> Example: RC Circuit with Two Capacitors </a> </ul> <li><a href="javascript:goto_page(731+24)"> Frequency Response: Magnitude/Phase vs. Frequency </a>
<li><a href="javascript:goto_page(226)"> Example: Analysis of Small Signal Amplifier with Capacitive Load </a> <ul> <li><a href="javascript:goto_page(732+24)"> Frequency Response of Capacitors, Inductor </a>
</ul> <li><a href="javascript:goto_page(227)"> Frequency Response: Magnitude/Phase vs. Frequency </a> <li><a href="javascript:goto_page(737+24)"> Intuitively Sketching th </a>
<ul> <li><a href="javascript:goto_page(228)"> Frequency Response of Capacitors, Inductor </a> <li><a href="javascript:goto_page(741+24)"> The Bode Plot: Sketching the Frequency Response of General Functions * </a>
<li><a href="javascript:goto_page(229)"> Intuitively Sketching th </a> </ul> <li><a href="javascript:goto_page(742+24)"> Filters </a>
<li><a href="javascript:goto_page(230)"> The Bode Plot: Sketching the Frequency Response of General Functions * </a> <ul> <li><a href="javascript:goto_page(744+24)"> Filter Design Example: Crossover Network </a>
</ul> <li><a href="javascript:goto_page(231)"> Filters </a> <li><a href="javascript:goto_page(746+24)"> Decoupling Amplifier Stages </a>
<ul> <li><a href="javascript:goto_page(232)"> Filter Design Example: Crossover Network </a> </ul> <li><a href="javascript:goto_page(751+24)"> Time Domain </a>
<li><a href="javascript:goto_page(233)"> Decoupling Amplifier Stages </a> <ul> <li><a href="javascript:goto_page(751+24)"> Frequency Domain Analysis </a>
</ul> <li><a href="javascript:goto_page(234)"> Time Domain </a> <li><a href="javascript:goto_page(754+24)"> Time Domain Analysis </a>
<ul> <li><a href="javascript:goto_page(235)"> Frequency Domain Analysis </a> <li><a href="javascript:goto_page(756+24)"> Comparing Time Domain and Frequency Domain Analyses </a>
<li><a href="javascript:goto_page(236)"> Time Domain Analysis </a> </ul> <li><a href="javascript:goto_page(757+24)"> Power and Energy in an Impedance </a>
<li><a href="javascript:goto_page(237)"> Comparing Time Domain and Frequency Domain Analyses </a> <ul> <li><a href="javascript:goto_page(758+24)"> Arbitrary Impedance </a>
</ul> <li><a href="javascript:goto_page(238)"> Power and Energy in an Impedance </a> <li><a href="javascript:goto_page(760+24)"> Pure Resistance </a>
<ul> <li><a href="javascript:goto_page(239)"> Arbitrary Impedance </a> <li><a href="javascript:goto_page(761+24)"> Pure Reactance </a>
<li><a href="javascript:goto_page(240)"> Pure Resistance </a> <li><a href="javascript:goto_page(763+24)"> Example: Power in an RC Circuit </a>
<li><a href="javascript:goto_page(241)"> Pure Reactance </a> </ul> <li><a href="javascript:goto_page(765+24)"> Summary </a>
<li><a href="javascript:goto_page(242)"> Example: Power in an RC Circuit </a>
</ul> <li><a href="javascript:goto_page(243)"> Summary </a> </ul> <li><a href="javascript:goto_page(777+24)"> Sinusoidal Steady State: Resonance </a>
</ul> <li><a href="javascript:goto_page(244)"> Sinusoidal Steady State: Resonance </a> <ul> <li><a href="javascript:goto_page(777+24)"> Parallel RLC, Sinusoidal Response </a>
<ul> <li><a href="javascript:goto_page(245)"> Parallel RLC, Sinusoidal Response </a> <ul> <li><a href="javascript:goto_page(778+24)"> Homogeneous Solution </a>
<ul> <li><a href="javascript:goto_page(246)"> Homogeneous Solution </a> <li><a href="javascript:goto_page(780+24)"> Particular Solution </a>
<li><a href="javascript:goto_page(247)"> Particular Solution </a> <li><a href="javascript:goto_page(781+24)"> Total Solution for the Parallel RLC Circuit </a>
<li><a href="javascript:goto_page(248)"> Total Solution for the Parallel RLC Circuit </a> </ul> <li><a href="javascript:goto_page(783+24)"> Frequency Response for Resonant Systems </a>
</ul> <li><a href="javascript:goto_page(249)"> Frequency Response for Resonant Systems </a> <ul> <li><a href="javascript:goto_page(792+24)"> The Resonant Region of the Frequency Response </a>
<ul> <li><a href="javascript:goto_page(250)"> The Resonant Region of the Frequency Response </a> </ul> <li><a href="javascript:goto_page(801+24)"> Series RLC </a>
</ul> <li><a href="javascript:goto_page(251)"> Series RLC </a> <li><a href="javascript:goto_page(808+24)"> The Bode Plot for Resonant Functions * </a>
<li><a href="javascript:goto_page(252)"> The Bode Plot for Resonant Functions * </a> <li><a href="javascript:goto_page(808+24)"> Filter Examples </a>
<li><a href="javascript:goto_page(253)"> Filter Examples </a> <ul> <li><a href="javascript:goto_page(809+24)"> Bandpass Filter </a>
<ul> <li><a href="javascript:goto_page(254)"> Bandpass Filter </a> <li><a href="javascript:goto_page(810+24)"> Lowpass Filter </a>
<li><a href="javascript:goto_page(255)"> Lowpass Filter </a> <li><a href="javascript:goto_page(812+24)"> Highpass Filter </a>
<li><a href="javascript:goto_page(256)"> Highpass Filter </a> <li><a href="javascript:goto_page(815+24)"> Notch Filter </a>
<li><a href="javascript:goto_page(257)"> Notch Filter </a> </ul> <li><a href="javascript:goto_page(816+24)"> Stored Energy in a Resonant Circuit </a>
</ul> <li><a href="javascript:goto_page(258)"> Stored Energy in a Resonant Circuit </a> <li><a href="javascript:goto_page(821+24)"> Summary </a>
<li><a href="javascript:goto_page(259)"> Summary </a>
</ul> <li><a href="javascript:goto_page(260)"> The Operational Amplifier Abstraction </a> </ul> <li><a href="javascript:goto_page(837+24)"> The Operational Amplifier Abstraction </a>
<ul> <li><a href="javascript:goto_page(261)"> Introduction </a> <ul> <li><a href="javascript:goto_page(837+24)"> Introduction </a>
<ul> <li><a href="javascript:goto_page(262)"> Historical Perspective </a> <ul> <li><a href="javascript:goto_page(838+24)"> Historical Perspective </a>
</ul> <li><a href="javascript:goto_page(263)"> Device Properties of the Operational Amplifier </a> </ul> <li><a href="javascript:goto_page(839+24)"> Device Properties of the Operational Amplifier </a>
<ul> <li><a href="javascript:goto_page(264)"> The Op Amp Model </a> <ul> <li><a href="javascript:goto_page(839+24)"> The Op Amp Model </a>
</ul> <li><a href="javascript:goto_page(265)"> Simple Op Amp Circuits </a> </ul> <li><a href="javascript:goto_page(842+24)"> Simple Op Amp Circuits </a>
<ul> <li><a href="javascript:goto_page(266)"> The Non-inverting Op Amp </a> <ul> <li><a href="javascript:goto_page(842+24)"> The Non-inverting Op Amp </a>
<li><a href="javascript:goto_page(267)"> A Second Example: The Inverting Connection </a> <li><a href="javascript:goto_page(844+24)"> A Second Example: The Inverting Connection </a>
<li><a href="javascript:goto_page(268)"> Sensitivity </a> <li><a href="javascript:goto_page(846+24)"> Sensitivity </a>
<li><a href="javascript:goto_page(269)"> A Special Case: The Voltage Follower </a> <li><a href="javascript:goto_page(847+24)"> A Special Case: The Voltage Follower </a>
<li><a href="javascript:goto_page(270)"> An Additional Constraint: $v^+ - v^- \simeq 0$ </a> <li><a href="javascript:goto_page(848+24)"> An Additional Constraint: $v^+ - v^- \simeq 0$ </a>
</ul> <li><a href="javascript:goto_page(271)"> Input and Output Resistances </a> </ul> <li><a href="javascript:goto_page(849+24)"> Input and Output Resistances </a>
<ul> <li><a href="javascript:goto_page(272)"> Output Resistance, Inverting Op Amp </a> <ul> <li><a href="javascript:goto_page(849+24)"> Output Resistance, Inverting Op Amp </a>
<li><a href="javascript:goto_page(273)"> Input Resistance, Inverting Connection </a> <li><a href="javascript:goto_page(851+24)"> Input Resistance, Inverting Connection </a>
<li><a href="javascript:goto_page(274)"> Input and Output R for Non-Inverting Op Amp </a> <li><a href="javascript:goto_page(853+24)"> Input and Output R for Non-Inverting Op Amp </a>
<li><a href="javascript:goto_page(275)"> Generalization on Input Resistance * </a> <li><a href="javascript:goto_page(855+24)"> Generalization on Input Resistance * </a>
<li><a href="javascript:goto_page(276)"> Example: Op Amp Current Source </a> <li><a href="javascript:goto_page(855+24)"> Example: Op Amp Current Source </a>
</ul> <li><a href="javascript:goto_page(277)"> Additional Examples </a> </ul> <li><a href="javascript:goto_page(857+24)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(278)"> Adder </a> <ul> <li><a href="javascript:goto_page(858+24)"> Adder </a>
<li><a href="javascript:goto_page(279)"> Subtracter </a> <li><a href="javascript:goto_page(858+24)"> Subtracter </a>
</ul> <li><a href="javascript:goto_page(280)"> Op Amp RC Circuits </a> </ul> <li><a href="javascript:goto_page(859+24)"> Op Amp RC Circuits </a>
<ul> <li><a href="javascript:goto_page(281)"> Op Amp Integrator </a> <ul> <li><a href="javascript:goto_page(859+24)"> Op Amp Integrator </a>
<li><a href="javascript:goto_page(282)"> Op Amp Differentiator </a> <li><a href="javascript:goto_page(862+24)"> Op Amp Differentiator </a>
<li><a href="javascript:goto_page(283)"> An RC Active Filter </a> <li><a href="javascript:goto_page(863+24)"> An RC Active Filter </a>
<li><a href="javascript:goto_page(284)"> The RC Active Filter -- Impedance Analysis </a> <li><a href="javascript:goto_page(865+24)"> The RC Active Filter -- Impedance Analysis </a>
<li><a href="javascript:goto_page(285)"> Sallen-Key Filter </a> <li><a href="javascript:goto_page(866+24)"> Sallen-Key Filter </a>
</ul> <li><a href="javascript:goto_page(286)"> Op Amp in Saturation </a> </ul> <li><a href="javascript:goto_page(866+24)"> Op Amp in Saturation </a>
<ul> <li><a href="javascript:goto_page(287)"> Op Amp Integrator in Saturation </a> <ul> <li><a href="javascript:goto_page(867+24)"> Op Amp Integrator in Saturation </a>
</ul> <li><a href="javascript:goto_page(288)"> Positive Feedback </a> </ul> <li><a href="javascript:goto_page(869+24)"> Positive Feedback </a>
<ul> <li><a href="javascript:goto_page(289)"> RC Oscillator </a> <ul> <li><a href="javascript:goto_page(869+24)"> RC Oscillator </a>
</ul> <li><a href="javascript:goto_page(290)"> Two-ports* </a> </ul> <li><a href="javascript:goto_page(872+24)"> Two-ports* </a>
<li><a href="javascript:goto_page(291)"> Summary </a> <li><a href="javascript:goto_page(873+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(292)"> Diodes </a>
<ul> <li><a href="javascript:goto_page(293)"> Introduction </a> </ul> <li><a href="javascript:goto_page(905+24)"> Diodes </a>
<li><a href="javascript:goto_page(294)"> Semiconductor Diode Characteristics </a> <ul> <li><a href="javascript:goto_page(905+24)"> Introduction </a>
<li><a href="javascript:goto_page(295)"> Analysis of Diode Circuits </a> <li><a href="javascript:goto_page(905+24)"> Semiconductor Diode Characteristics </a>
<ul> <li><a href="javascript:goto_page(296)"> Method of Assumed States </a> <li><a href="javascript:goto_page(908+24)"> Analysis of Diode Circuits </a>
</ul> <li><a href="javascript:goto_page(297)"> Nonlinear Analysis with RL and RC </a> <ul> <li><a href="javascript:goto_page(908+24)"> Method of Assumed States </a>
<ul> <li><a href="javascript:goto_page(298)"> Peak Detector</a> </ul> <li><a href="javascript:goto_page(912+24)"> Nonlinear Analysis with RL and RC </a>
<li><a href="javascript:goto_page(299)"> Example: Clamping Circuit </a> <ul> <li><a href="javascript:goto_page(912+24)"> Peak Detector</a>
<li><a href="javascript:goto_page(300)"> A Switched Power Supply Using a Diode </a> <li><a href="javascript:goto_page(915+24)"> Example: Clamping Circuit </a>
</ul> <li><a href="javascript:goto_page(301)"> Additional Examples </a> <li><a href="javascript:goto_page(918+24)"> A Switched Power Supply Using a Diode </a>
<ul> <li><a href="javascript:goto_page(302)"> Piecewise Linear Example: Clipping Circuit </a> </ul> <li><a href="javascript:goto_page(918+24)"> Additional Examples </a>
<li><a href="javascript:goto_page(303)"> Exponentiation Circuit </a> <ul> <li><a href="javascript:goto_page(918+24)"> Piecewise Linear Example: Clipping Circuit </a>
<li><a href="javascript:goto_page(304)"> Piecewise Linear Example: Limiter </a> <li><a href="javascript:goto_page(918+24)"> Exponentiation Circuit </a>
<li><a href="javascript:goto_page(305)"> Example: Full-Wave Diode Bridge </a> <li><a href="javascript:goto_page(918+24)"> Piecewise Linear Example: Limiter </a>
<li><a href="javascript:goto_page(306)"> Incremental Example: Zener Diode Regulator </a> <li><a href="javascript:goto_page(918+24)"> Example: Full-Wave Diode Bridge </a>
<li><a href="javascript:goto_page(307)"> Incremental Example: Diode Attenuator </a> <li><a href="javascript:goto_page(918+24)"> Incremental Example: Zener Diode Regulator </a>
</ul> <li><a href="javascript:goto_page(308)"> Summary </a> <li><a href="javascript:goto_page(918+24)"> Incremental Example: Diode Attenuator </a>
</ul> <li><a href="javascript:goto_page(309)"> Maxwell's Equations and the LMD </a> </ul> <li><a href="javascript:goto_page(919+24)"> Summary </a>
<ul> <li><a href="javascript:goto_page(310)"> The Lumped Matter Discipline </a>
<ul> <li><a href="javascript:goto_page(311)"> The First Constraint of the Lumped Matter Discipline </a> </ul> <li><a href="javascript:goto_page(927+24)"> Maxwell's Equations and the LMD </a>
<li><a href="javascript:goto_page(312)"> The Second Constraint of the Lumped Matter Discipline </a> <ul> <li><a href="javascript:goto_page(927+24)"> The Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(313)"> The Third Constraint of the Lumped Matter Discipline </a> <ul> <li><a href="javascript:goto_page(927+24)"> The First Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(314)"> The Lumped Matter Discipline Applied to Circuits </a> <li><a href="javascript:goto_page(930+24)"> The Second Constraint of the Lumped Matter Discipline </a>
</ul> <li><a href="javascript:goto_page(315)"> Deriving Kirchhoff's Laws </a> <li><a href="javascript:goto_page(932+24)"> The Third Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(316)"> Deriving the Resistance of a Piece of Material </a> <li><a href="javascript:goto_page(933+24)"> The Lumped Matter Discipline Applied to Circuits </a>
</ul> <li><a href="javascript:goto_page(317)"> Trigonometric Functions \& Identities </a> </ul> <li><a href="javascript:goto_page(934+24)"> Deriving Kirchhoff's Laws </a>
<ul> <li><a href="javascript:goto_page(318)"> Negative Arguments </a> <li><a href="javascript:goto_page(936+24)"> Deriving the Resistance of a Piece of Material </a>
<li><a href="javascript:goto_page(319)"> Phase-Shifted Arguments </a> </ul> <li><a href="javascript:goto_page(941+24)"> Trigonometric Functions \& Identities </a>
<li><a href="javascript:goto_page(320)"> Sum and Difference Arguments </a> <ul> <li><a href="javascript:goto_page(941+24)"> Negative Arguments </a>
<li><a href="javascript:goto_page(321)"> Products </a> <li><a href="javascript:goto_page(942+24)"> Phase-Shifted Arguments </a>
<li><a href="javascript:goto_page(322)"> Half-Angle \& Twice-Angle Arguments </a> <li><a href="javascript:goto_page(942+24)"> Sum and Difference Arguments </a>
<li><a href="javascript:goto_page(323)"> Squares </a> <li><a href="javascript:goto_page(943+24)"> Products </a>
<li><a href="javascript:goto_page(324)"> Miscellaneous </a> <li><a href="javascript:goto_page(943+24)"> Half-Angle \& Twice-Angle Arguments </a>
<li><a href="javascript:goto_page(325)"> Taylor Series Expansions </a> <li><a href="javascript:goto_page(943+24)"> Squares </a>
<li><a href="javascript:goto_page(326)"> Relations to $e^j\theta}$ </a> <li><a href="javascript:goto_page(943+24)"> Miscellaneous </a>
</ul> <li><a href="javascript:goto_page(327)"> Complex Numbers </a> <li><a href="javascript:goto_page(944+24)"> Taylor Series Expansions </a>
<ul> <li><a href="javascript:goto_page(328)"> Magnitude and Phase</a> <li><a href="javascript:goto_page(944+24)"> Relations to $e^j\theta}$ </a>
<li><a href="javascript:goto_page(329)"> Polar Representation </a> </ul> <li><a href="javascript:goto_page(947+24)"> Complex Numbers </a>
<li><a href="javascript:goto_page(330)"> Addition and Subtraction </a> <ul> <li><a href="javascript:goto_page(947+24)"> Magnitude and Phase</a>
<li><a href="javascript:goto_page(331)"> Multiplication and Division </a> <li><a href="javascript:goto_page(948+24)"> Polar Representation </a>
<li><a href="javascript:goto_page(332)"> Complex Conjugate </a> <li><a href="javascript:goto_page(949+24)"> Addition and Subtraction </a>
<li><a href="javascript:goto_page(333)"> Properties of $e^j\theta}$ </a> <li><a href="javascript:goto_page(949+24)"> Multiplication and Division </a>
<li><a href="javascript:goto_page(334)"> Rotation </a> <li><a href="javascript:goto_page(950+24)"> Complex Conjugate </a>
<li><a href="javascript:goto_page(335)"> Complex Functions of Time </a> <li><a href="javascript:goto_page(951+24)"> Properties of $e^j\theta}$ </a>
<li><a href="javascript:goto_page(336)"> Numerical Examples </a> <li><a href="javascript:goto_page(951+24)"> Rotation </a>
</ul> <li><a href="javascript:goto_page(337)"> Solving Simultaneous Linear Equations </a> <li><a href="javascript:goto_page(952+24)"> Complex Functions of Time </a>
<li><a href="javascript:goto_page(952+24)"> Numerical Examples </a>
</ul> <li><a href="javascript:goto_page(957+24)"> Solving Simultaneous Linear Equations </a>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Licensing Information </h1>
<table><tr><td> Videos and Ungraded Exercises </td> <td> <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-sa/3.0/80x15.png" /></a><br />The videos on this page are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Graded Exercises</td><td>Graded exercises are All Rights Reserved until the due date. Past the due date, they are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Textbook</td><td>Textbook is All Rights Reserved Elsevier. We are using it with permission. We apologize for the inclusion of proprietary work. </td></tr>
<tr><td>Student-generated content</td><td>Due to privacy concerns, all forum posts, wiki etc, and other student-created works are All Rights Reserved until released otherwise by MIT. </td></tr>
<tr><td>Source Code</td><td>Source code is All Rights Reserved during the beta offering. We expect to release it under a free and open license shortly thereafter. </td></tr>
</table>
<p>MIT and MITx are trademarks of the Massachusetts Instititute of
Technology, and may not be used without permission.
</section>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Honor Code </h1>
<ul>
<li> I agree to not engage in any activities that would dishonestly improve my results, or improve or hurt those of others.
<l1> I agree to never post answers to problems.
<li> I agree to maintain only one account.
</ul>
</section>
<%inherit file="main.html" /> <%inherit file="marketing.html" />
<header class="announcement"> <header class="announcement course">
<div class="anouncement-wrapper"> <div class="anouncement-wrapper">
<nav> <nav>
<h1><a href="/t/mitx_global.html">MITx</a></h1>
<a class="modal login" href="#login">Log In</a> <a class="modal login" href="#login">Log In</a>
</nav> </nav>
<section class="course"> <section class="course">
<h2>6.002</h2> <section>
<h1>Circuits &amp; Electronics</h1> <h1>Circuits &amp; Electronics</h1>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, "6.002 Circuits and Electronics" is an on-line adaption of MIT's first undergraduate analog design course. This course will run, free of charge, for students worldwide from February 1, 2012 through July 1, 2012.</p> <h2>6.002</h2>
<a class="modal enroll" href="#enroll">Enroll in 6.002 Circuits &amp; Electronics</a> <a class="modal enroll" href="#enroll">Enroll in 6.002 Circuits <span>&amp;</span> Electronics</a>
</section>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, &ldquo;6.002x Circuits and Electronics&rdquo; is an experimental on-line adaption of MIT's first undergraduate analog design course 6.002. This course will run, free of charge, for students worldwide from February 21, 2012 through June&nbsp;10,&nbsp;2012.</p>
</section> </section>
</div> </div>
...@@ -20,57 +23,67 @@ ...@@ -20,57 +23,67 @@
<section class="index-content"> <section class="index-content">
<section class="about-course"> <section class="about-course">
<section> <section class="about-info">
<h1>About 6.002</h1> <h1>About 6.002</h1>
<p> 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.</p> <p>6.002x is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.</p>
<p> The course introduces engineering in the context of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.</p> <p>The course introduces engineering in the context of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. Students should expect to spend approximately 10 hours per week on the course. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.</p>
<!-- <p> The course uses the textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. While recommended, the book is not required -- relevant section will be provided electronically as part of the on-line course.</p> --> <!-- <p> The course uses the textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. While recommended, the book is not required -- relevant section will be provided electronically as part of the on-line course.</p> -->
</section> </section>
<section> <section class="on-mitx">
<h1>6.002 on <a href="/t/mitx_global.html">MITx</a></h1> <!-- Link doesn't need to be here, but there should be some way to get back to main MITx site --> <h1>6.002 on MITx</h1> <!-- Link doesn't need to be here, but there should be some way to get back to main MITx site -->
<p> Students who successfully complete the course will receive an electronic certificate of accomplishment from MIT. Students will not receive course credit, but students successfully finishing the course will be well-placed to take an exam to pass out of 6.002 should they ever enroll at MIT, and potentially, similar courses at other schools.</p> <p>Students who successfully complete the course will receive an electronic certificate of accomplishment from MIT. Since this is an experimental version of the course, the certificate will be marked as Beta.</p>
<p> In order to succeed in this course, students must have some background in calculus and differential equations. Since more advanced mathematics will not show up until the second half of the course, the first half of the course will include an optional remedial differential equations component for students with weaker math backgrounds.</p> <p> The course uses the textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. While recommended, the book is not required -- relevant sections will be provided electronically as part of the on-line course. The book can be purchased on <a href="http://www.amazon.com/exec/obidos/ASIN/1558607358/ref=nosim" target="_blank">Amazon</a>. Copyright for the book is with Elsevier and the book cannot be printed etc.</p>
</section> </section>
<section class="requirements"> <section class="requirements">
<h1> Requirements </h1> <h1> Requirements </h1>
<p> Students entering the course are expected to know how basic calculus and differential equations, as well as basic linear algebra. In addition, a background in E&amp;M is helpful, although not critical.</p> <p>In order to succeed in this course, students must have taken an AP level physics course in electricity and magnetism. Students must know basic calculus and linear algebra, and have some background in differential equations. Since more advanced mathematics will not show up until the second half of the course, the first half of the course will include an optional remedial differential equations component for students with weaker math backgrounds.</p>
<p> The course web site was developed and tested primarily with Google Chrome. We support Mozilla Firefox as well. While we will attempt to make it possible to complete the course with Internet Explorer, portions of the web site functionality will be unavailable. The videos require Flash. </p> <p>The course web site was developed and tested primarily with Google Chrome. We support Mozilla Firefox as well. While we will attempt to make it possible to complete the course with Internet Explorer, portions of the web site functionality will be unavailable. The videos require Flash.</p>
</section> </section>
<section class="cta">
<a class="modal enroll" href="#enroll">Enroll in Circuits &amp; Electronics</a>
</section>
</section> </section>
<section class="staff"> <section class="staff">
<h1>About the course staff</h1> <h1>About the course staff</h1>
<ul> <ul>
<li> <li>
<img src="/static/staff/agarwal-mit-news-small.jpg">
<h2>Anant Agarwal</h2> <h2>Anant Agarwal</h2>
<p><img src="/static/staff/agarwal-mit-news-small.jpg">The Director of MIT's Computer Science and Artificial Intelligence Laboratory. His research focus is in parallel computer architectures, and he is the founder of several successful startups. Most recently, he founded Tilera, which produces scalable multicore embedded processors. He co-author the course textbook "Foundations of Analog and Digital Electronic Circuits."</p></li> <p>The Director of MIT's Computer Science and Artificial Intelligence Laboratory. His research focus is in parallel computer architectures, and he is the founder of several successful startups. Most recently, he founded Tilera, which produces scalable multicore embedded processors. He co-author the course textbook "Foundations of Analog and Digital Electronic Circuits."</p></li>
<li> <li>
<img src="/static/staff/cjt-small.jpg">
<h2>Chris Terman</h2> <h2>Chris Terman</h2>
<p><img src="/static/staff/cjt-small.jpg">The Co-Director MIT CSAIL, and a highly regarded instructor. He is the author of JSim, an educational package for on-line circuit schematic entry and simulation, and XTutor, and on-line question-and-answer tutoring system.</p></li> <p>The Co-Director MIT CSAIL, and a highly regarded instructor. He is the author of JSim, an educational package for on-line circuit schematic entry and simulation, and XTutor, and on-line question-and-answer tutoring system.</p></li>
<li> <li>
<img src="/static/staff/gjs-small.jpg">
<h2>Gerald Sussman</h2> <h2>Gerald Sussman</h2>
<p><img src="/static/staff/gjs-small.jpg">A Professor of Electrical Engineering at MIT. He is a well know educator in the computer science community, perhaps best know as the author of Structure and Interpretation of Computer Programs, which is universally acknowledged as one of the top ten textboooks in computer science, or as the creator of Scheme, a popular teaching language. His research spans a range of topics, from artificial intelligence, to physics and chaotic systems, to supercomputer design.</p></li> <p>A Professor of Electrical Engineering at MIT. He is a well know educator in the computer science community, perhaps best know as the author of Structure and Interpretation of Computer Programs, which is universally acknowledged as one of the top ten textboooks in computer science, or as the creator of Scheme, a popular teaching language. His research spans a range of topics, from artificial intelligence, to physics and chaotic systems, to supercomputer design.</p></li>
<li> <li>
<img src="/static/staff/pmitros-small.jpg">
<h2>Piotr Mitros</h2> <h2>Piotr Mitros</h2>
<p><img src="/static/staff/pmitros-small.jpg">A Research Scientist at MIT. His research focus is in finding ways to apply techniques from control systems to optimizing the learning process. Piotr has worked as an analog designer at Texas Instruments, Talking Lights, and most recently, designed the analog front end for a novel medical imaging modality for Rhythmia Medical.</p></li> <p>A Research Scientist at MIT. His research focus is in finding ways to apply techniques from control systems to optimizing the learning process. Piotr has worked as an analog designer at Texas Instruments, Talking Lights, and most recently, designed the analog front end for a novel medical imaging modality for Rhythmia Medical.</p></li>
</ul> </ul>
</section> </section>
<div class="secondary">
<!-- <div class="secondary"> -->
<!-- <section class="credits"> --> <!-- <section class="credits"> -->
<!-- <h1> Credits </h1> --> <!-- <h1> Credits </h1> -->
...@@ -85,10 +98,7 @@ ...@@ -85,10 +98,7 @@
<!-- <p> The system is running in the Amazon cloud, which allows us to hold up to anticipated loads. </p> --> <!-- <p> The system is running in the Amazon cloud, which allows us to hold up to anticipated loads. </p> -->
<!-- </section> --> <!-- </section> -->
<section> <!-- </div> -->
<a class="modal enroll" href="#enroll">Enroll in Circuits &amp; Electronics</a>
</section>
</div>
</section> </section>
<div style="display:none"> <div style="display:none">
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
<link rel="stylesheet" href="/static/lib/jquery.treeview.css" type="text/css" media="all" /> <link rel="stylesheet" href="/static/lib/jquery.treeview.css" type="text/css" media="all" />
<link rel="stylesheet" href="/static/css/application.css" type="text/css" media="all" /> <link rel="stylesheet" href="/static/css/application.css" type="text/css" media="all" />
<link href="/static/css/jquery-ui-1.8.16.custom.css" rel="stylesheet" type="text/css"/> <link href="/static/css/jquery-ui-1.8.16.custom.css" rel="stylesheet" type="text/css"/>
<link href="/static/css/print.css" rel="stylesheet" type="text/css" media="print"/>
<script type="text/javascript" src="/static/lib/jquery-1.6.2.min.js"></script> <script type="text/javascript" src="/static/lib/jquery-1.6.2.min.js"></script>
<script type="text/javascript" src="/static/lib/jquery-ui-1.8.16.custom.min.js"></script> <script type="text/javascript" src="/static/lib/jquery-ui-1.8.16.custom.min.js"></script>
...@@ -13,6 +14,7 @@ ...@@ -13,6 +14,7 @@
<script type="text/javascript" src="/static/lib/jquery.treeview.js"></script> <script type="text/javascript" src="/static/lib/jquery.treeview.js"></script>
<script type="text/javascript" src="/static/js/video_player.js"></script> <script type="text/javascript" src="/static/js/video_player.js"></script>
<script type="text/javascript" src="/static/js/schematic.js"></script> <script type="text/javascript" src="/static/js/schematic.js"></script>
<script type="text/javascript" src="/static/js/cktsim.js"></script>
<!-- Warning: Do not upgrade FancyBox. V2.0 is under a non-free CC license --> <!-- Warning: Do not upgrade FancyBox. V2.0 is under a non-free CC license -->
<script type="text/javascript" src="/static/lib/fancybox/jquery.fancybox-1.3.4.js"></script> <script type="text/javascript" src="/static/lib/fancybox/jquery.fancybox-1.3.4.js"></script>
......
<!DOCTYPE html>
<html>
<head>
<%block name="title"><title>MITX 6.002</title></%block>
<link rel="stylesheet" href="/static/lib/jquery.treeview.css" type="text/css" media="all" />
<link rel="stylesheet" href="/static/css/marketing.css" type="text/css" media="all" />
<script type="text/javascript" src="/static/lib/jquery-1.6.2.min.js"></script>
<script type="text/javascript" src="/static/lib/jquery-ui-1.8.16.custom.min.js"></script>
<!-- Warning: Do not upgrade FancyBox. V2.0 is under a non-free CC license -->
<script type="text/javascript" src="/static/lib/fancybox/jquery.fancybox-1.3.4.js"></script>
<link rel="stylesheet" href="/static/lib/fancybox/jquery.fancybox-1.3.4.css">
<script type="text/javascript" src="/static/lib//swfobject/swfobject.js"></script>
<script type="text/javascript" src="/static/lib/jquery.treeview.js"></script>
<script type="text/javascript" src="/static/js/video_player.js"></script>
<script type="text/javascript" src="/static/js/schematic.js"></script>
<script>
$(function() {
// Set up FancyBox pop-ups
$("a.modal").fancybox({
'hideOnContentClick': false
});
});
</script>
<%block name="headextra"/>
</head>
<body>
${self.body()}
<%block name="bodyextra"/>
<footer>
<!-- Template based on a design from http://www.dotemplate.com/ - Donated $10 (pmitros) so we don't need to include credit. -->
<div class="footer-wrapper">
<p> Copyright (c). 2011. MIT. <a href="/t/copyright.html">Some rights reserved.</a></p>
<ul>
<li><a href="/t/tos.html">Terms of service</a></li>
<li><a href="/t/privacy.html">Privacy Policy</a></li>
<li><a href="/t/honor.html">Honor Code</a></li>
</ul>
</div>
</footer>
<div style="display:none">
<div id="feedback_div">
Found a bug? Got an idea for improving our system? Let us know.
<form>
<ol>
<li><label>Subject:</label> <input id="feedback_subject" size=40></li>
<li><label>Feedback: </label><textarea id="feedback_message" cols="40" rows="5"></textarea></li>
<li><input id="feedback_button" type="button" value="Submit"></li>
</ol>
</form>
</div>
</div>
<div style="display:none">
<div id="calculator_div">
<input id="calculator_input" >
<input id="calculator_button" type=button value="=&gt;">
<input id="calculator_output" readonly>
<p>Supported operations: ^ * / + - || ()</p>
<p>Supported suffixes: %kMGTcmunp</p>
</div>
</div>
<script>
// Feedback form
$(function() {
$("#feedback_button").click(function(){
postJSON("/send_feedback", {"subject":$("#feedback_subject").attr("value"),
"url":document.URL,
"message":$("#feedback_message").attr("value")},
function(data){
$("#feedback_subject").attr("value","");
$("#feedback_message").attr("value","");
$("#feedback_div").html("Feedback submitted. Thank you");
});
});
});
// Calculator
$(function() {
$("#calculator_button").click(function(){
$.getJSON("/calculate", {"equation":$("#calculator_input").attr("value")},
function(data){
$("#calculator_output").attr("value",data.result);
});
});
});
</script>
</body>
</html>
<%inherit file="main.html" /> <%inherit file="marketing.html" />
<header class="announcement"> <header class="announcement home">
<div class="anouncement-wrapper"> <div class="anouncement-wrapper">
<nav> <nav>
<a class="modal login" href="#login">Log In</a> <a class="modal login" href="#login">Log In</a>
</nav> </nav>
<section> <section>
<h1>An MIT Education Anywhere. <br />For free.</h1> <h1>MITx</h1>
<p>MITx is an open learning software available free of cost, so that others &mdash; whether other universities or different educational institutions, such as K&ndash;12 school systems &mdash; can leverage the same software for their online education offerings.</p> <h2>An MIT Education Anywhere. For free.</h2>
</section> </section>
</div> </div>
</header> </header>
<section class="index-content"> <section class="index-content">
<section class="about"> <section class="about">
<h1>About MITx</h1> <h1>MITx is MIT&rsquo;s online learning initiative.</h1>
<p>MITx is a portfolio of MIT courses through an online interactive learning platform that:</p>
<section class="intro">
<p>This learning platform will enhance the educational experience of its on-campus students, offering them online tools that supplement and enrich their classroom and laboratory experiences. It will also be host to a virtual community of learners around the world.</p>
<p>The first course offered by MITx in an experimental prototype form is 6.002x Circuits and Electronics. Watch this space for the next set of courses that will become available in Fall 2012.</p>
</section>
<ul> <section class="features">
<li>organizes and presents course material to enable students to learn at their own pace</li> <h2>It will offer a portfolio of MIT courses for free on an online learning platform that:</h2>
<li>features interactivity, online laboratories and student-to-student communication</li>
<li>allows for the individual assessment of any student&rsquo;s work and allow students who demonstrate their mastery of subjects to earn a certificate of completion awarded by MITx</li>
<li>operates on an open-source, scalable software infrastructure in order to make it continuously improving and readily available to other educational institutions.</li>
</ul>
<p>This learning platform will enhance the educational experience of its on-campus students, offering them online tools that supplement and enrich their classroom and laboratory experiences. It will also be host to a virtual community learners around the world.</p> <ul>
<li>organizes and presents course material to enable students to learn at their own pace</li>
<li>features interactivity, online laboratories and student-to-student communication</li>
<li>allows for the individual assessment of any student&rsquo;s work and allow students who demonstrate their mastery of subjects to earn a certificate of completion awarded by MITx</li>
<li>operates on an open-source, scalable software infrastructure in order to make it continuously improving and readily available to other educational institutions.</li>
</ul>
<p><strong>Press &amp; links:</strong> <a href="http://www.boston.com/news/local/massachusetts/articles/2011/12/19/mit_to_launch_online_only_graded_courses_free_to_all/?page=full" target="_blank">Boston Globe</a>, <a href="http://www.nytimes.com/2011/12/19/education/mit-expands-free-online-courses-offering-certificates.html?_r=3&hpw=" target="_blank">New York Times</a>, <a href="http://web.mit.edu/newsoffice/2011/mitx-education-initiative-1219.html" target="_blank">MIT Press Release</a>, <a href="http://web.mit.edu/newsoffice/2011/mitx-faq-1219" target="_blank">MITx FAQ</a></p>
</section>
</section> </section>
<section> <section class="course">
<h1>Course offering</h1> <hgroup>
<h2>6.002 Circuits and Electronics</h2> <h1>Spring 2012 Course offering</h1>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, "6.002 Circuits and Electronics" is an on-line adaption of MIT's first undergraduate analog design course. This course will run, free of charge, for students worldwide from February 1, 2012 through July 1, 2012.</p> <h2>Circuits and Electronics</h2>
<h3>6.002x</h3>
</hgroup>
<p> <p>
<a href="/" class="more-info">More information about Circuits and Electronics</a> <a href="/" class="more-info">More information <span>&amp;</span> Enroll</a>
</p> </p>
<p>Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, &ldquo;6.002 Circuits and Electronics&rdwuo; is an on-line adaption of MIT's first undergraduate analog design course. This prototype course will run, free of charge, for students worldwide from February 21, 2012 through June 10, 2012. Students will be given the opportunity to demonstrate their mastery of the material and earn a certificate from MITx.</p>
</section> </section>
<div style="display:none"> <div style="display:none">
...@@ -52,7 +64,8 @@ ...@@ -52,7 +64,8 @@
</section> </section>
<script> <script>
$(function() { $(function() {
/* Set up FancyBox pop-ups */ /* Set up FancyBox pop-ups */
...@@ -122,5 +135,4 @@ $(function() { ...@@ -122,5 +135,4 @@ $(function() {
/*$("sregion"+$("[id^=spinner_]")[1].id.substring(7)) */ /*$("sregion"+$("[id^=spinner_]")[1].id.substring(7)) */
}); });
</script> </script>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Privacy Policy </h1>
</section>
// Functions
//---------------------------------------- //
// Flexible grid
@function flex-grid($columns, $container-columns: $fg-max-columns) {
$width: $columns * $fg-column + ($columns - 1) * $fg-gutter;
$container-width: $container-columns * $fg-column + ($container-columns - 1) * $fg-gutter;
@return percentage($width / $container-width);
}
// Flexible grid gutter
@function flex-gutter($container-columns: $fg-max-columns, $gutter: $fg-gutter) {
$container-width: $container-columns * $fg-column + ($container-columns - 1) * $fg-gutter;
@return percentage($gutter / $container-width);
}
// Line-height
@function lh($amount: 1) {
@return $lh * $amount;
}
// Variables
//---------------------------------------- //
// // grid
$fg-column: 60px;
$fg-gutter: 25px;
$fg-max-columns: 12;
$fg-max-width: 1400px;
$fg-min-width: 810px;
$gw-column: 60px;
$gw-gutter: 25px;
$body-font-family: Georgia, serif;
$header-font-family: "Open Sans", Helvetica, Arial, sans-serif;
// @media screen and (min-width: 940px) {
$body-font-size: 16px;
// }
// @media screen and (max-width: 939px) {
// $body-font-size: 14px;
// }
$lh: golden-ratio($body-font-size, 1);
$mit-red: #990000;
@font-face { @font-face {
font-family: 'Oswald'; font-family: 'Open Sans';
font-style: normal; font-style: normal;
font-weight: normal; font-weight: 400;
src: local('Oswald '), local('Oswald'), url('http://themes.googleusercontent.com/static/fonts/oswald/v3/qpy-UiLNKP-VfOdbcs6r6-vvDin1pK8aKteLpeZ5c0A.woff') format('woff'); src: local('Open Sans'), local('OpenSans'), url('http://themes.googleusercontent.com/static/fonts/opensans/v6/cJZKeOuBrn4kERxqtaUH3bO3LdcAZYWl9Si6vvxL-qU.woff') format('woff');
}
@font-face {
font-family: 'Open Sans';
font-style: normal;
font-weight: 800;
src: local('Open Sans Extrabold'), local('OpenSans-Extrabold'), url('http://themes.googleusercontent.com/static/fonts/opensans/v6/EInbV5DfGHOiMmvb1Xr-hqRDOzjiPcYnFooOUGCOsRk.woff') format('woff');
}
// Extends
//---------------------------------------- //
.wrapper {
@include box-sizing(border-box);
margin: 0 auto;
max-width: $fg-max-width;
min-width: $fg-min-width;
padding: lh();
width: flex-grid(12);
}
.clearfix:after {
content: ".";
display: block;
height: 0;
clear: both;
visibility: hidden;
}
.button {
@include border-radius(3px);
@include border-radius(3px);
@include inline-block();
@include transition();
background-color: $mit-red;
color: #fff;
margin: lh() 0 lh(.5);
padding: lh(.25) lh(.5);
text-decoration: none;
&:hover {
background-color: darken($mit-red, 10%);
}
span {
font-family: Garamond, Baskerville, "Baskerville Old Face", "Hoefler Text", "Times New Roman", serif;
font-style: italic;
}
}
body {
background-color: #fff;
color: #444;
font: $body-font-size $body-font-family;
#{$all-text-inputs}, textarea {
@include box-shadow(0 -1px 0 #fff);
@include linear-gradient(#eee, #fff);
border: 1px solid #999;
font: $body-font-size $body-font-family;
padding: 4px;
width: 100%;
&:focus {
border-color: $mit-red;
}
}
} }
header.announcement { header.announcement {
background: $mit-red;
border-top: 3px solid darken($mit-red, 10%);
color: #fff; color: #fff;
border-bottom: 1px solid #000;
background: #e3e3e3;
@include background-size(cover);
&.home {
@media screen and (min-width: 1200px) {
background: #e3e3e3 url("/static/images/marketing/shot-1-large.jpg");
}
@media screen and (max-width: 1199px) {
background: #e3e3e3 url("/static/images/marketing/shot-1-medium.jpg");
}
div {
padding: lh(10) lh() lh(3);
}
}
&.course {
@media screen and (min-width: 1200px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-large.jpg");
}
@media screen and (max-width: 1199px) and (min-width: 700px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-medium.jpg");
@include background-size(cover);
}
@media screen and (max-width: 699px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-small.jpg");
@include background-size(cover);
}
div {
padding: lh(4) lh() lh(2);
}
}
div { div {
@extend .wrapper; @extend .wrapper;
padding: 80px $body-line-height 60px;
position: relative; position: relative;
@include box-sizing(border-box);
nav { nav {
position: absolute; position: absolute;
top: 20px; top: 0;
right: 0; right: lh();
@include border-radius(0 0 3px 3px);
background: rgba(#000, .7);
padding: lh(.5);
h1 {
@include inline-block();
margin-right: lh();
a {
font: 800 18px $header-font-family;
color: #fff;
text-decoration: none;
}
}
a.login { a.login {
text-transform: uppercase; text-decoration: none;
color: #fff; color: #fff;
font-size: 12px; font-size: 12px;
margin-right: 20px;
text-shadow: 0 -1px 0 darken($mit-red, 10%);
&:hover { &:hover {
color: rgba(#fff, .6); color: rgba(#fff, .6);
...@@ -36,157 +151,297 @@ header.announcement { ...@@ -36,157 +151,297 @@ header.announcement {
section { section {
@extend .clearfix; @extend .clearfix;
padding-left: grid-width(3); @include inline-block();
background: $mit-red;
margin-left: flex-grid(4) + flex-gutter();
padding: lh() lh(1.5);
h1 { h1 {
font-family: "Oswald"; @include inline-block();
font-size: 62px; font-family: "Open Sans";
font-size: 30px;
font-weight: 800;
line-height: 1.2em; line-height: 1.2em;
margin: 0; margin: 0 lh() 0 0;
text-transform: uppercase;
text-shadow: 0 -2px 0 darken($mit-red, 10%);
} }
p { h2 {
line-height: 1.6em; @include inline-block();
max-width: 700px; font-family: "Open Sans";
margin: 2em 0 0; font-size: 24px;
font-weight: 400;
line-height: 1.2em;
} }
&.course { &.course {
padding-left: grid-width(4) + $gw-gutter; section {
width: flex-grid(4, 8);
a.enroll { margin-right: flex-gutter(8);
@include button(#fff); float: left;
@include inline-block(); margin-left: 0;
@include box-shadow(0 1px 0 lighten($mit-red, 10%)); padding: 0;
margin-top: lh();
font-size: 18px; a {
padding: lh(.5); @extend .button;
border-color: darken($mit-red, 10%); background-color: darken($mit-red, 20%);
display: block;
&:hover { padding: lh(.5) lh();
text-decoration: none; text-align: center;
&:hover {
background-color: darken($mit-red, 10%);
}
} }
} }
p {
width: flex-grid(4, 8);
line-height: lh();
float: left;
}
} }
} }
} }
} }
section.index-content { section.index-content {
@extend .main-content;
@extend .wrapper; @extend .wrapper;
@include box-sizing(border-box); @extend .clearfix;
padding: lh();
section { section {
width: grid-width(6);
@extend .clearfix; @extend .clearfix;
float: left; float: left;
&.about { h1 {
margin-right: $gw-gutter; font-size: 24px;
font-weight: 800;
font-family: "Open Sans";
margin-bottom: lh();
} }
&.about-course { p {
width: grid-width(12); line-height: lh();
float: none; margin-bottom: lh();
@extend .clearfix; }
ul {
margin: 0;
// list-style: disc outside none;
// li {
// list-style: disc outside none;
// }
}
&.about {
@include box-sizing(border-box);
border-right: 1px solid #e5e5e5;
margin-right: flex-gutter();
padding-right: flex-gutter() / 2;
width: flex-grid(8);
section { section {
width: grid-width(4); @extend .clearfix;
margin-right: $gw-gutter; margin-bottom: lh();
&.requirements { p {
margin-right: 0; width: flex-grid(4, 8);
float: left;
&:nth-child(odd) {
margin-right: flex-gutter(8);
}
}
&.features {
border-top: 1px solid #E5E5E5;
padding-top: lh();
margin-bottom: 0;
h2 {
text-transform: uppercase;
letter-spacing: 1px;
color: #666;
margin-bottom: lh();
}
p {
width: auto;
strong {
font-family: "Open sans";
font-weight: 800;
}
a {
color: $mit-red;
text-decoration: none;
@include transition();
&:hover, &:focus {
color: darken($mit-red, 15%);
}
}
}
ul {
margin-bottom: 0;
li {
line-height: lh();
width: flex-grid(4, 8);
float: left;
margin-bottom: lh(.5);
&:nth-child(odd) {
margin-right: flex-gutter(8);
}
}
}
} }
} }
} }
&.staff { &.course, &.staff {
@extend .clearfix; width: flex-grid(4);
border-top: 1px solid #eee;
float: none;
width: grid-width(12);
margin-top: lh();
padding-top: lh();
ul { h1 {
list-style: none; font: normal $body-font-size $body-font-family;
margin: 0; text-transform: uppercase;
letter-spacing: 1px;
color: #666;
margin-bottom: lh();
}
li { h2 {
width: grid-width(3); font: 800 24px $header-font-family;
list-style: none; }
float: left;
margin-right: $gw-gutter; h3 {
font: 400 18px $header-font-family;
}
a {
@extend .button;
}
ul {
li {
img { img {
float: left; float: left;
margin: 0 1em 1em 0; margin-right: lh(.5);
}
&:last-child {
margin-right: 0;
} }
} }
} }
} }
h1 { &.course {
font-size: 34px; h2 {
margin-top: 0; padding-top: lh(5);
font-family: "Oswald"; background: url('/static/images/marketing/circuits-bg.jpg') 0 0 no-repeat;
@include background-size(contain);
@media screen and (max-width: 998px) {
background: url('/static/images/marketing/circuits-medium-bg.jpg') 0 0 no-repeat;
}
}
} }
ul {
margin: 0 grid-width(1) 1em;
list-style: disc outside none;
li { // index
list-style: disc outside none; //---------------------------------------- //
&.about-course {
@include box-sizing(border-box);
border-right: 1px solid #e5e5e5;
margin-right: flex-gutter();
padding-right: flex-gutter() / 2;
width: flex-grid(8);
section {
width: flex-grid(4, 8);
&.about-info {
margin-right: flex-gutter(8);
}
&.requirements {
clear: both;
width: auto;
border-top: 1px solid #E5E5E5;
padding-top: lh();
margin-bottom: 0;
p {
float: left;
width: flex-grid(4, 8);
margin-right: flex-gutter(8);
&:nth-child(odd) {
margin-right: 0;
}
}
}
&.cta {
width: 100%;
a.enroll {
@extend .button;
padding: lh(.5) lh();
display: block;
text-align: center;
font: 800 18px $header-font-family;
}
}
} }
} }
}
}
p { footer {
line-height: 1.5; @extend .wrapper;
} @extend .clearfix;
padding-top: 0;
a.more-info { div.footer-wrapper {
// @extend .button; border-top: 1px solid #e5e5e5;
@include button(simple, $mit-red); padding: lh() 0;
@include inline-block(); background: url('/static/images/marketing/mit-logo.png') right center no-repeat;
margin-top: lh();
font-size: 18px;
padding: lh(.5);
&:hover { a {
text-decoration: none; color: #888;
text-decoration: none;
@include transition();
&:hover, &:focus {
color: #666;
} }
} }
}
div.secondary { p {
border-top: 1px solid #eee; @include inline-block();
margin-top: lh(); margin-right: lh();
padding-top: lh(); }
section { ul {
text-align: center; @include inline-block();
width: auto;
float: none;
a.enroll { li {
@include button(simple, $mit-red);
@include inline-block(); @include inline-block();
margin-top: lh();
font-size: 18px;
padding: lh(.5);
&:hover { &:after {
text-decoration: none; content: ' |';
display: inline;
color: #ccc;
} }
&:last-child {
&:after {
content: none;
}
}
} }
} }
} }
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
@import "textbook"; @import "textbook";
@import "profile"; @import "profile";
@import "wiki-create", "wiki"; @import "wiki-create", "wiki";
@import "index";
@import "activation"; @import "activation";
// left over // left over
......
@import "bourbon/bourbon";
@import "reset";
// pages
@import "index-functions", "index-variables", "index";
@import "fancybox";
<span> <span>
<input type="hidden" class="schematic" height="${height}" width="${width}" name="input_${id}" id="input_${id}" value="" /> <input type="hidden" class="schematic" height="${height}" width="${width}" parts="${parts}" analyses="${analyses}" name="input_${id}" id="input_${id}" value="" initial_value=""/>
<div id="hidden_${id}" style="display:none"> <div id="value_${id}" style="display:none">${value}</div>
${value} <div id="initial_value_${id}" style="display:none">${initial_value}</div>
</div>
<script> <script>
$("#input_${id}").attr("value",$("#hidden_${id}").text()) $("#input_${id}").attr("value",$("#value_${id}").text());
$("#input_${id}").attr("initial_value",$("#initial_value_${id}").text());
</script> </script>
<span id="answer_${id}"></span> <span id="answer_${id}"></span>
% if state == 'unsubmitted': % if state == 'unsubmitted':
......
...@@ -30,6 +30,10 @@ var ${ id }loc = -1; ...@@ -30,6 +30,10 @@ var ${ id }loc = -1;
function ${ id }goto(i) { function ${ id }goto(i) {
log_event("seq_goto", {'old':${id}loc, 'new':i,'id':'${id}'}); log_event("seq_goto", {'old':${id}loc, 'new':i,'id':'${id}'});
postJSON('/modx/sequential/${ id }/goto_position',
{'position' : i });
if (${ id }loc!=-1) if (${ id }loc!=-1)
${ id }destroy_functions[ ${ id }loc ](); ${ id }destroy_functions[ ${ id }loc ]();
$('#seq_content').html(${ id }contents[i]); $('#seq_content').html(${ id }contents[i]);
...@@ -72,5 +76,5 @@ $(function() { ...@@ -72,5 +76,5 @@ $(function() {
} }
$('#${ id }next').click(function(eo) { ${ id }next();}); $('#${ id }next').click(function(eo) { ${ id }next();});
$('#${ id }prev').click(function(eo) { ${ id }prev();}); $('#${ id }prev').click(function(eo) { ${ id }prev();});
${ id }goto(1); ${ id }goto( ${ position } );
}); });
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Terms of Service </h1>
<table><tr><td> Videos and Ungraded Exercises </td> <td> <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-sa/3.0/80x15.png" /></a><br />The videos on this page are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Graded Exercises</td><td>Graded exercises are All Rights Reserved until the due date. Past the due date, they are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Textbook</td><td>Textbook is All Rights Reserved Elsevier. We are using it with permission. We apologize for the inclusion of proprietary work. </td></tr>
<tr><td>Student-generated content</td><td>Due to privacy concerns, all forum posts, wiki etc, and other student-created works are All Rights Reserved until released otherwise by MIT. </td></tr>
<tr><td>Source Code</td><td>Source code is All Rights Reserved during the beta offering. We expect to release it under a free and open license shortly thereafter. </td></tr>
</table>
<p>MIT and MITx are trademarks of the Massachusetts Instititute of
Technology, and may not be used without permission.
</section>
...@@ -30,7 +30,7 @@ function good() { ...@@ -30,7 +30,7 @@ function good() {
ajax_video=good; ajax_video=good;
loadNewVideo(streams["1.0"], ${ video_time }); loadNewVideo(streams["1.0"], ${ position });
function add_speed(key, stream) { function add_speed(key, stream) {
var id = 'speed_' + stream; var id = 'speed_' + stream;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment