Commit 07f328f6 by Bridger Maxwell

merge

parents 7200ca0d 25cb4673
No preview for this file type
<li><a href="javascript:goto_page(1)"> The Circuit Abstraction </a>
<ul> <li><a href="javascript:goto_page(2)"> The Power of Abstraction </a>
<li><a href="javascript:goto_page(3)"> The Lumped Circuit Abstraction</a>
<li><a href="javascript:goto_page(4)"> The Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(5)"> Limitations of the Lumped Circuit Abstraction </a>
<li><a href="javascript:goto_page(6)"> Practical Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(7)"> Batteries </a>
<li><a href="javascript:goto_page(8)"> Linear Resistors </a>
<li><a href="javascript:goto_page(9)"> Associated Variables Convention </a>
</ul> <li><a href="javascript:goto_page(10)"> Ideal Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(11)"> Ideal Voltage Sources, Wires and Resistors </a>
<li><a href="javascript:goto_page(12)"> Element Laws </a>
<li><a href="javascript:goto_page(13)"> The Current Source</a>
</ul> <li><a href="javascript:goto_page(14)"> Modeling Physical Elements </a>
<li><a href="javascript:goto_page(15)"> Signal Representation </a>
<ul> <li><a href="javascript:goto_page(16)"> Analog Signals</a>
<li><a href="javascript:goto_page(17)"> Digital Signals</a>
</ul> <li><a href="javascript:goto_page(18)"> Summary </a>
</ul> <li><a href="javascript:goto_page(19)"> Resistive Networks </a>
<ul> <li><a href="javascript:goto_page(20)"> Terminology </a>
<li><a href="javascript:goto_page(21)"> Kirchhoff's Laws </a>
<ul> <li><a href="javascript:goto_page(22)"> KCL </a>
<li><a href="javascript:goto_page(23)"> KVL </a>
</ul> <li><a href="javascript:goto_page(24)"> Circuit Analysis: Basic Method </a>
<ul> <li><a href="javascript:goto_page(25)"> Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(26)"> Quick Intuitive Analysis of Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(27)"> Energy Conservation </a>
<li><a href="javascript:goto_page(28)"> Voltage and Current Dividers </a>
<li><a href="javascript:goto_page(29)"> Voltage Dividers </a>
<li><a href="javascript:goto_page(30)"> Resistors in Series </a>
<li><a href="javascript:goto_page(31)"> Current Dividers </a>
<li><a href="javascript:goto_page(32)"> Resistors in Parallel </a>
<li><a href="javascript:goto_page(33)"> A More Complex Circuit </a>
</ul> <li><a href="javascript:goto_page(34)"> Intuitive Method of Circuit Analysis </a>
<li><a href="javascript:goto_page(35)"> More Examples </a>
<li><a href="javascript:goto_page(36)"> Dependent Sources and the Control Concept </a>
<ul> <li><a href="javascript:goto_page(37)"> Circuits with Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(38)"> A Formulation Suitable for a Computer Solution * </a>
<li><a href="javascript:goto_page(39)"> Summary </a>
</ul> <li><a href="javascript:goto_page(40)"> Network Theorems </a>
<ul> <li><a href="javascript:goto_page(41)"> Introduction </a>
<li><a href="javascript:goto_page(42)"> The Node Voltage </a>
<li><a href="javascript:goto_page(43)"> The Node Method </a>
<ul> <li><a href="javascript:goto_page(44)"> Node Method: A Second Example </a>
<li><a href="javascript:goto_page(45)"> Floating Independent Voltage Sources </a>
<li><a href="javascript:goto_page(46)"> Dependent Sources and the Node Method </a>
<li><a href="javascript:goto_page(47)"> The Conductance and Source Matrices *}</a>
</ul> <li><a href="javascript:goto_page(48)"> Loop Method * </a>
<li><a href="javascript:goto_page(49)"> Superposition </a>
<ul> <li><a href="javascript:goto_page(50)"> Superposition Rules for Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(51)"> Th\'e}venin's Theorem and Norton's Theorem </a>
<ul> <li><a href="javascript:goto_page(52)"> The Th\'e}venin Equivalent Network </a>
<li><a href="javascript:goto_page(53)"> The Norton Equivalent Network </a>
<li><a href="javascript:goto_page(54)"> More Examples </a>
</ul> <li><a href="javascript:goto_page(55)"> Summary </a>
</ul> <li><a href="javascript:goto_page(56)"> Analysis of Nonlinear Circuits </a>
<ul> <li><a href="javascript:goto_page(57)"> Introduction to Nonlinear Elements </a>
<li><a href="javascript:goto_page(58)"> Analytical Solutions </a>
<li><a href="javascript:goto_page(59)"> Graphical Analysis </a>
<li><a href="javascript:goto_page(60)"> Piecewise Linear Analysis </a>
<ul> <li><a href="javascript:goto_page(61)"> Improved Piecewise Linear Models for Nonlinear Elements * </a>
</ul> <li><a href="javascript:goto_page(62)"> Incremental Analysis </a>
<li><a href="javascript:goto_page(63)"> Summary </a>
</ul> <li><a href="javascript:goto_page(64)"> The Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(65)"> Voltage Levels and the Static Discipline </a>
<li><a href="javascript:goto_page(66)"> Boolean Logic </a>
<li><a href="javascript:goto_page(67)"> Combinational Gates </a>
<li><a href="javascript:goto_page(68)"> Standard Sum-of-Products Representation </a>
<li><a href="javascript:goto_page(69)"> Simplifying Logic Expressions * </a>
<li><a href="javascript:goto_page(70)"> Number Representation </a>
<li><a href="javascript:goto_page(71)"> Summary </a>
</ul> <li><a href="javascript:goto_page(72)"> The MOSFET Switch </a>
<ul> <li><a href="javascript:goto_page(73)"> The Switch </a>
<li><a href="javascript:goto_page(74)"> Logic Functions Using Switches </a>
<li><a href="javascript:goto_page(75)"> The MOSFET Device and Its S Model </a>
<li><a href="javascript:goto_page(76)"> MOSFET Switch Implementation of Logic Gates </a>
<li><a href="javascript:goto_page(77)"> Static Analysis Using the S Model </a>
<li><a href="javascript:goto_page(78)"> The SR Model of the MOSFET </a>
<li><a href="javascript:goto_page(79)"> Physical Structure of the MOSFET $*$ </a>
<li><a href="javascript:goto_page(80)"> Static Analysis Using the SR Model </a>
<ul> <li><a href="javascript:goto_page(81)"> Static Analysis of the \it NAND} Gate Using the SR Model </a>
</ul> <li><a href="javascript:goto_page(82)"> Signal Restoration </a>
<ul> <li><a href="javascript:goto_page(83)"> Signal Restoration and Gain </a>
<li><a href="javascript:goto_page(84)"> Signal Restoration and Nonlinearity </a>
<li><a href="javascript:goto_page(85)"> Buffer Characteristics and the Static Discipline </a>
<li><a href="javascript:goto_page(86)"> Inverter Transfer Characteristics and the Static Discipline </a>
</ul> <li><a href="javascript:goto_page(87)"> Power Consumption in Logic Gates </a>
<li><a href="javascript:goto_page(88)"> Active Pullups </a>
<li><a href="javascript:goto_page(89)"> Summary </a>
</ul> <li><a href="javascript:goto_page(90)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(91)"> Signal Amplification </a>
<li><a href="javascript:goto_page(92)"> Review of Dependent Sources </a>
<li><a href="javascript:goto_page(93)"> Actual MOSFET Characteristics</a>
<li><a href="javascript:goto_page(94)"> The Switch Current Source (SCS) MOSFET Model </a>
<li><a href="javascript:goto_page(95)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(96)"> Biasing the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(97)"> The Amplifier Abstraction and the Saturation Discipline </a>
</ul> <li><a href="javascript:goto_page(98)"> Large Signal Analysis of the MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(99)"> $v_IN}$ versus $v_OUT}$ in the Saturation Region </a>
<li><a href="javascript:goto_page(100)"> Valid Input and Output Voltage Ranges </a>
<li><a href="javascript:goto_page(101)"> Lowest Valid Input Voltage </a>
<li><a href="javascript:goto_page(102)"> Highest Valid Input Voltage </a>
</ul> <li><a href="javascript:goto_page(103)"> Operating Point Selection </a>
<li><a href="javascript:goto_page(104)"> Switch Unified (SU) MOSFET Model $*$ </a>
<li><a href="javascript:goto_page(105)"> Summary </a>
</ul> <li><a href="javascript:goto_page(106)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(107)"> Overview of the Nonlinear MOSFET Amplifier </a>
<li><a href="javascript:goto_page(108)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(109)"> Small Signal Circuit Representation </a>
<li><a href="javascript:goto_page(110)"> Small Signal Circuit for the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(111)"> Selecting an Operating Point </a>
<li><a href="javascript:goto_page(112)"> Input and Output Resistance, Current and Power Gain </a>
<li><a href="javascript:goto_page(113)"> Input Resistance $r_i}$ </a>
<li><a href="javascript:goto_page(114)"> Output Resistance $r_out}$ </a>
<li><a href="javascript:goto_page(115)"> Current Gain </a>
<li><a href="javascript:goto_page(116)"> Power Gain </a>
</ul> <li><a href="javascript:goto_page(117)"> Summary </a>
</ul> <li><a href="javascript:goto_page(118)"> Energy Storage Elements </a>
<ul> <li><a href="javascript:goto_page(119)"> Constitutive Laws </a>
<ul> <li><a href="javascript:goto_page(120)"> Capacitors </a>
<li><a href="javascript:goto_page(121)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(122)"> Series \& Parallel Connections </a>
<ul> <li><a href="javascript:goto_page(123)"> Capacitors </a>
<li><a href="javascript:goto_page(124)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(125)"> Special Examples </a>
<ul> <li><a href="javascript:goto_page(126)"> MOSFET Gate Capacitance </a>
<li><a href="javascript:goto_page(127)"> Wiring Loop Inductance </a>
<li><a href="javascript:goto_page(128)"> IC Wiring Capacitance and Inductance </a>
<li><a href="javascript:goto_page(129)"> Transformers * </a>
</ul> <li><a href="javascript:goto_page(130)"> Simple Circuit Examples </a>
<ul> <li><a href="javascript:goto_page(131)"> Sinusoidal Inputs * </a>
<li><a href="javascript:goto_page(132)"> Step Inputs </a>
<li><a href="javascript:goto_page(133)"> Impulse Inputs </a>
<li><a href="javascript:goto_page(134)"> Role Reversal$*$ </a>
</ul> <li><a href="javascript:goto_page(135)"> Energy, Charge and Flux Conservation </a>
<li><a href="javascript:goto_page(136)"> Summary </a>
</ul> <li><a href="javascript:goto_page(137)"> First-order Transients </a>
<ul> <li><a href="javascript:goto_page(138)"> Analysis of RC Circuits </a>
<ul> <li><a href="javascript:goto_page(139)"> Parallel RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(140)"> RC Discharge Transient </a>
<li><a href="javascript:goto_page(141)"> Properties of Exponentials </a>
<li><a href="javascript:goto_page(142)"> Series RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(143)"> Series RC Circuit, Square Wave Input </a>
</ul> <li><a href="javascript:goto_page(144)"> Analysis of RL Circuits </a>
<ul> <li><a href="javascript:goto_page(145)"> Series RL Circuit, Step Input </a>
</ul> <li><a href="javascript:goto_page(146)"> Intuitive Analysis </a>
<li><a href="javascript:goto_page(147)"> Propagation Delay and the Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(148)"> Definitions </a>
<li><a href="javascript:goto_page(149)"> Computing $t_pd}$ from the SRC MOSFET Model </a>
<li><a href="javascript:goto_page(150)"> Computing $t_pd,0 \rightarrow 1}$ </a>
<li><a href="javascript:goto_page(151)"> Computing $t_pd,1 \rightarrow 0}$ </a>
<li><a href="javascript:goto_page(152)"> Computing $t_pd}$ </a>
</ul> <li><a href="javascript:goto_page(153)"> State and State Variables * </a>
<ul> <li><a href="javascript:goto_page(154)"> The Concept of State </a>
<li><a href="javascript:goto_page(155)"> Computer Analysis using the State Equation </a>
<li><a href="javascript:goto_page(156)"> Zero-input and Zero-state Response </a>
<li><a href="javascript:goto_page(157)"> Solution by Integrating Factors* </a>
</ul> <li><a href="javascript:goto_page(158)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(159)"> Effect of Wire Inductance in Digital Circuits </a>
<li><a href="javascript:goto_page(160)"> Ramp Inputs and Linearity </a>
<li><a href="javascript:goto_page(161)"> Response of an RC Circuit to Short Pulses and the Impulse Response </a>
<li><a href="javascript:goto_page(162)"> Intuitive Method for the Impulse Response </a>
<li><a href="javascript:goto_page(163)"> Clock Signals and Clock Fanout </a>
<li><a href="javascript:goto_page(164)"> RC Response to Decaying Exponential * </a>
<li><a href="javascript:goto_page(165)"> Series RL Circuit with Sinewave Input </a>
</ul> <li><a href="javascript:goto_page(166)"> Digital Memory </a>
<ul> <li><a href="javascript:goto_page(167)"> The Concept of Digital State </a>
<li><a href="javascript:goto_page(168)"> An Abstract Digital Memory Element </a>
<li><a href="javascript:goto_page(169)"> Design of the Digital Memory Element </a>
<li><a href="javascript:goto_page(170)"> A Static Memory Element </a>
</ul> <li><a href="javascript:goto_page(171)"> Summary </a>
</ul> <li><a href="javascript:goto_page(172)"> Energy and Power in Digital Circuits </a>
<ul> <li><a href="javascript:goto_page(173)"> Power and Energy Relations for a Simple RC Circuit </a>
<li><a href="javascript:goto_page(174)"> Average Power in an RC Circuit </a>
<ul> <li><a href="javascript:goto_page(175)"> Energy Dissipated during Interval $T_1$ </a>
<li><a href="javascript:goto_page(176)"> Energy Dissipated during Interval $T_2$ </a>
<li><a href="javascript:goto_page(177)"> Total Energy Dissipated </a>
</ul> <li><a href="javascript:goto_page(178)"> Power Dissipation in Logic Gates </a>
<ul> <li><a href="javascript:goto_page(179)"> Static Power Dissipation </a>
<li><a href="javascript:goto_page(180)"> Total Power Dissipation </a>
<li><a href="javascript:goto_page(181)"> Energy Dissipated during Interval $T_1$ </a>
<li><a href="javascript:goto_page(182)"> Energy Dissipated during Interval $T_2$ </a>
<li><a href="javascript:goto_page(183)"> Total Energy Dissipated </a>
</ul> <li><a href="javascript:goto_page(184)"> NMOS Logic </a>
<li><a href="javascript:goto_page(185)"> CMOS Logic </a>
<ul> <li><a href="javascript:goto_page(186)"> CMOS Logic Gate Design </a>
<li><a href="javascript:goto_page(187)"> CMOS NAND Gate </a>
<li><a href="javascript:goto_page(188)"> CMOS NOR Gate </a>
<li><a href="javascript:goto_page(189)"> Other Logic Functions </a>
</ul> <li><a href="javascript:goto_page(190)"> Summary </a>
</ul> <li><a href="javascript:goto_page(191)"> Transients in Second Order Circuits </a>
<ul> <li><a href="javascript:goto_page(192)"> Undriven LC Circuit </a>
<li><a href="javascript:goto_page(193)"> Undriven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(194)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(195)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(196)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(197)"> Stored Energy in Transient, Series RLC Circuit </a>
<li><a href="javascript:goto_page(198)"> Undriven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(199)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(200)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(201)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(202)"> Driven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(203)"> Step Response </a>
<li><a href="javascript:goto_page(204)"> Impulse Response * </a>
</ul> <li><a href="javascript:goto_page(205)"> Driven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(206)"> Step Response </a>
<li><a href="javascript:goto_page(207)"> Impulse Response </a>
</ul> <li><a href="javascript:goto_page(208)"> Intuitive Analysis of Second-Order Circuits </a>
<li><a href="javascript:goto_page(209)"> Two-Capacitor Or Two-Inductor Circuits </a>
<li><a href="javascript:goto_page(210)"> State-Variable Method * </a>
<li><a href="javascript:goto_page(211)"> State-Space Analysis * </a>
<ul> <li><a href="javascript:goto_page(212)"> Numerical Solution * </a>
</ul> <li><a href="javascript:goto_page(213)"> Higher-Order Circuits* </a>
<li><a href="javascript:goto_page(214)"> Summary </a>
</ul> <li><a href="javascript:goto_page(215)"> Sinusoidal Steady State </a>
<ul> <li><a href="javascript:goto_page(216)"> Introduction </a>
<li><a href="javascript:goto_page(217)"> Analysis using Complex Exponential Drive </a>
<ul> <li><a href="javascript:goto_page(218)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(219)"> Particular Solution </a>
<li><a href="javascript:goto_page(220)"> Complete Solution </a>
<li><a href="javascript:goto_page(221)"> Sinusoidal Steady State Response </a>
</ul> <li><a href="javascript:goto_page(222)"> The Boxes: Impedance </a>
<ul> <li><a href="javascript:goto_page(223)"> Example: Series RL Circuit </a>
<li><a href="javascript:goto_page(224)"> Example: Another RC Circuit </a>
<li><a href="javascript:goto_page(225)"> Example: RC Circuit with Two Capacitors </a>
<li><a href="javascript:goto_page(226)"> Example: Analysis of Small Signal Amplifier with Capacitive Load </a>
</ul> <li><a href="javascript:goto_page(227)"> Frequency Response: Magnitude/Phase vs. Frequency </a>
<ul> <li><a href="javascript:goto_page(228)"> Frequency Response of Capacitors, Inductor </a>
<li><a href="javascript:goto_page(229)"> Intuitively Sketching th </a>
<li><a href="javascript:goto_page(230)"> The Bode Plot: Sketching the Frequency Response of General Functions * </a>
</ul> <li><a href="javascript:goto_page(231)"> Filters </a>
<ul> <li><a href="javascript:goto_page(232)"> Filter Design Example: Crossover Network </a>
<li><a href="javascript:goto_page(233)"> Decoupling Amplifier Stages </a>
</ul> <li><a href="javascript:goto_page(234)"> Time Domain </a>
<ul> <li><a href="javascript:goto_page(235)"> Frequency Domain Analysis </a>
<li><a href="javascript:goto_page(236)"> Time Domain Analysis </a>
<li><a href="javascript:goto_page(237)"> Comparing Time Domain and Frequency Domain Analyses </a>
</ul> <li><a href="javascript:goto_page(238)"> Power and Energy in an Impedance </a>
<ul> <li><a href="javascript:goto_page(239)"> Arbitrary Impedance </a>
<li><a href="javascript:goto_page(240)"> Pure Resistance </a>
<li><a href="javascript:goto_page(241)"> Pure Reactance </a>
<li><a href="javascript:goto_page(242)"> Example: Power in an RC Circuit </a>
</ul> <li><a href="javascript:goto_page(243)"> Summary </a>
</ul> <li><a href="javascript:goto_page(244)"> Sinusoidal Steady State: Resonance </a>
<ul> <li><a href="javascript:goto_page(245)"> Parallel RLC, Sinusoidal Response </a>
<ul> <li><a href="javascript:goto_page(246)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(247)"> Particular Solution </a>
<li><a href="javascript:goto_page(248)"> Total Solution for the Parallel RLC Circuit </a>
</ul> <li><a href="javascript:goto_page(249)"> Frequency Response for Resonant Systems </a>
<ul> <li><a href="javascript:goto_page(250)"> The Resonant Region of the Frequency Response </a>
</ul> <li><a href="javascript:goto_page(251)"> Series RLC </a>
<li><a href="javascript:goto_page(252)"> The Bode Plot for Resonant Functions * </a>
<li><a href="javascript:goto_page(253)"> Filter Examples </a>
<ul> <li><a href="javascript:goto_page(254)"> Bandpass Filter </a>
<li><a href="javascript:goto_page(255)"> Lowpass Filter </a>
<li><a href="javascript:goto_page(256)"> Highpass Filter </a>
<li><a href="javascript:goto_page(257)"> Notch Filter </a>
</ul> <li><a href="javascript:goto_page(258)"> Stored Energy in a Resonant Circuit </a>
<li><a href="javascript:goto_page(259)"> Summary </a>
</ul> <li><a href="javascript:goto_page(260)"> The Operational Amplifier Abstraction </a>
<ul> <li><a href="javascript:goto_page(261)"> Introduction </a>
<ul> <li><a href="javascript:goto_page(262)"> Historical Perspective </a>
</ul> <li><a href="javascript:goto_page(263)"> Device Properties of the Operational Amplifier </a>
<ul> <li><a href="javascript:goto_page(264)"> The Op Amp Model </a>
</ul> <li><a href="javascript:goto_page(265)"> Simple Op Amp Circuits </a>
<ul> <li><a href="javascript:goto_page(266)"> The Non-inverting Op Amp </a>
<li><a href="javascript:goto_page(267)"> A Second Example: The Inverting Connection </a>
<li><a href="javascript:goto_page(268)"> Sensitivity </a>
<li><a href="javascript:goto_page(269)"> A Special Case: The Voltage Follower </a>
<li><a href="javascript:goto_page(270)"> An Additional Constraint: $v^+ - v^- \simeq 0$ </a>
</ul> <li><a href="javascript:goto_page(271)"> Input and Output Resistances </a>
<ul> <li><a href="javascript:goto_page(272)"> Output Resistance, Inverting Op Amp </a>
<li><a href="javascript:goto_page(273)"> Input Resistance, Inverting Connection </a>
<li><a href="javascript:goto_page(274)"> Input and Output R for Non-Inverting Op Amp </a>
<li><a href="javascript:goto_page(275)"> Generalization on Input Resistance * </a>
<li><a href="javascript:goto_page(276)"> Example: Op Amp Current Source </a>
</ul> <li><a href="javascript:goto_page(277)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(278)"> Adder </a>
<li><a href="javascript:goto_page(279)"> Subtracter </a>
</ul> <li><a href="javascript:goto_page(280)"> Op Amp RC Circuits </a>
<ul> <li><a href="javascript:goto_page(281)"> Op Amp Integrator </a>
<li><a href="javascript:goto_page(282)"> Op Amp Differentiator </a>
<li><a href="javascript:goto_page(283)"> An RC Active Filter </a>
<li><a href="javascript:goto_page(284)"> The RC Active Filter -- Impedance Analysis </a>
<li><a href="javascript:goto_page(285)"> Sallen-Key Filter </a>
</ul> <li><a href="javascript:goto_page(286)"> Op Amp in Saturation </a>
<ul> <li><a href="javascript:goto_page(287)"> Op Amp Integrator in Saturation </a>
</ul> <li><a href="javascript:goto_page(288)"> Positive Feedback </a>
<ul> <li><a href="javascript:goto_page(289)"> RC Oscillator </a>
</ul> <li><a href="javascript:goto_page(290)"> Two-ports* </a>
<li><a href="javascript:goto_page(291)"> Summary </a>
</ul> <li><a href="javascript:goto_page(292)"> Diodes </a>
<ul> <li><a href="javascript:goto_page(293)"> Introduction </a>
<li><a href="javascript:goto_page(294)"> Semiconductor Diode Characteristics </a>
<li><a href="javascript:goto_page(295)"> Analysis of Diode Circuits </a>
<ul> <li><a href="javascript:goto_page(296)"> Method of Assumed States </a>
</ul> <li><a href="javascript:goto_page(297)"> Nonlinear Analysis with RL and RC </a>
<ul> <li><a href="javascript:goto_page(298)"> Peak Detector</a>
<li><a href="javascript:goto_page(299)"> Example: Clamping Circuit </a>
<li><a href="javascript:goto_page(300)"> A Switched Power Supply Using a Diode </a>
</ul> <li><a href="javascript:goto_page(301)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(302)"> Piecewise Linear Example: Clipping Circuit </a>
<li><a href="javascript:goto_page(303)"> Exponentiation Circuit </a>
<li><a href="javascript:goto_page(304)"> Piecewise Linear Example: Limiter </a>
<li><a href="javascript:goto_page(305)"> Example: Full-Wave Diode Bridge </a>
<li><a href="javascript:goto_page(306)"> Incremental Example: Zener Diode Regulator </a>
<li><a href="javascript:goto_page(307)"> Incremental Example: Diode Attenuator </a>
</ul> <li><a href="javascript:goto_page(308)"> Summary </a>
</ul> <li><a href="javascript:goto_page(309)"> Maxwell's Equations and the LMD </a>
<ul> <li><a href="javascript:goto_page(310)"> The Lumped Matter Discipline </a>
<ul> <li><a href="javascript:goto_page(311)"> The First Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(312)"> The Second Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(313)"> The Third Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(314)"> The Lumped Matter Discipline Applied to Circuits </a>
</ul> <li><a href="javascript:goto_page(315)"> Deriving Kirchhoff's Laws </a>
<li><a href="javascript:goto_page(316)"> Deriving the Resistance of a Piece of Material </a>
</ul> <li><a href="javascript:goto_page(317)"> Trigonometric Functions \& Identities </a>
<ul> <li><a href="javascript:goto_page(318)"> Negative Arguments </a>
<li><a href="javascript:goto_page(319)"> Phase-Shifted Arguments </a>
<li><a href="javascript:goto_page(320)"> Sum and Difference Arguments </a>
<li><a href="javascript:goto_page(321)"> Products </a>
<li><a href="javascript:goto_page(322)"> Half-Angle \& Twice-Angle Arguments </a>
<li><a href="javascript:goto_page(323)"> Squares </a>
<li><a href="javascript:goto_page(324)"> Miscellaneous </a>
<li><a href="javascript:goto_page(325)"> Taylor Series Expansions </a>
<li><a href="javascript:goto_page(326)"> Relations to $e^j\theta}$ </a>
</ul> <li><a href="javascript:goto_page(327)"> Complex Numbers </a>
<ul> <li><a href="javascript:goto_page(328)"> Magnitude and Phase</a>
<li><a href="javascript:goto_page(329)"> Polar Representation </a>
<li><a href="javascript:goto_page(330)"> Addition and Subtraction </a>
<li><a href="javascript:goto_page(331)"> Multiplication and Division </a>
<li><a href="javascript:goto_page(332)"> Complex Conjugate </a>
<li><a href="javascript:goto_page(333)"> Properties of $e^j\theta}$ </a>
<li><a href="javascript:goto_page(334)"> Rotation </a>
<li><a href="javascript:goto_page(335)"> Complex Functions of Time </a>
<li><a href="javascript:goto_page(336)"> Numerical Examples </a>
</ul> <li><a href="javascript:goto_page(337)"> Solving Simultaneous Linear Equations </a>
<li><a href="javascript:goto_page(27)"> The Circuit Abstraction </a>
<ul> <li><a href="javascript:goto_page(27)"> The Power of Abstraction </a>
<li><a href="javascript:goto_page(29)"> The Lumped Circuit Abstraction</a>
<li><a href="javascript:goto_page(33)"> The Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(37)"> Limitations of the Lumped Circuit Abstraction </a>
<li><a href="javascript:goto_page(39)"> Practical Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(40)"> Batteries </a>
<li><a href="javascript:goto_page(42)"> Linear Resistors </a>
<li><a href="javascript:goto_page(49)"> Associated Variables Convention </a>
</ul> <li><a href="javascript:goto_page(53)"> Ideal Two-Terminal Elements </a>
<ul> <li><a href="javascript:goto_page(54)"> Ideal Voltage Sources, Wires and Resistors </a>
<li><a href="javascript:goto_page(56)"> Element Laws </a>
<li><a href="javascript:goto_page(57)"> The Current Source</a>
</ul> <li><a href="javascript:goto_page(60)"> Modeling Physical Elements </a>
<li><a href="javascript:goto_page(64)"> Signal Representation </a>
<ul> <li><a href="javascript:goto_page(65)"> Analog Signals</a>
<li><a href="javascript:goto_page(66)"> Digital Signals</a>
</ul> <li><a href="javascript:goto_page(70)"> Summary </a>
</ul> <li><a href="javascript:goto_page(77)"> Resistive Networks </a>
<ul> <li><a href="javascript:goto_page(78)"> Terminology </a>
<li><a href="javascript:goto_page(79)"> Kirchhoff's Laws </a>
<ul> <li><a href="javascript:goto_page(80)"> KCL </a>
<li><a href="javascript:goto_page(84)"> KVL </a>
</ul> <li><a href="javascript:goto_page(90)"> Circuit Analysis: Basic Method </a>
<ul> <li><a href="javascript:goto_page(91)"> Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(94)"> Quick Intuitive Analysis of Single-Resistor Circuits </a>
<li><a href="javascript:goto_page(95)"> Energy Conservation </a>
<li><a href="javascript:goto_page(97)"> Voltage and Current Dividers </a>
<li><a href="javascript:goto_page(99)"> Voltage Dividers </a>
<li><a href="javascript:goto_page(100)"> Resistors in Series </a>
<li><a href="javascript:goto_page(104)"> Current Dividers </a>
<li><a href="javascript:goto_page(108)"> Resistors in Parallel </a>
<li><a href="javascript:goto_page(108)"> A More Complex Circuit </a>
</ul> <li><a href="javascript:goto_page(131)"> Intuitive Method of Circuit Analysis </a>
<li><a href="javascript:goto_page(132)"> More Examples </a>
<li><a href="javascript:goto_page(122)"> Dependent Sources and the Control Concept </a>
<ul> <li><a href="javascript:goto_page(126)"> Circuits with Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(131)"> A Formulation Suitable for a Computer Solution * </a>
<li><a href="javascript:goto_page(132)"> Summary </a>
</ul> <li><a href="javascript:goto_page(143)"> Network Theorems </a>
<ul> <li><a href="javascript:goto_page(143)"> Introduction </a>
<li><a href="javascript:goto_page(143)"> The Node Voltage </a>
<li><a href="javascript:goto_page(149)"> The Node Method </a>
<ul> <li><a href="javascript:goto_page(154)"> Node Method: A Second Example </a>
<li><a href="javascript:goto_page(159)"> Floating Independent Voltage Sources </a>
<li><a href="javascript:goto_page(163)"> Dependent Sources and the Node Method </a>
<li><a href="javascript:goto_page(169)"> The Conductance and Source Matrices *}</a>
</ul> <li><a href="javascript:goto_page(169)"> Loop Method * </a>
<li><a href="javascript:goto_page(169)"> Superposition </a>
<ul> <li><a href="javascript:goto_page(176)"> Superposition Rules for Dependent Sources </a>
</ul> <li><a href="javascript:goto_page(182)"> Th\'e}venin's Theorem and Norton's Theorem </a>
<ul> <li><a href="javascript:goto_page(182)"> The Th\'e}venin Equivalent Network </a>
<li><a href="javascript:goto_page(192)"> The Norton Equivalent Network </a>
<li><a href="javascript:goto_page(195)"> More Examples </a>
</ul> <li><a href="javascript:goto_page(201)"> Summary </a>
</ul> <li><a href="javascript:goto_page(217)"> Analysis of Nonlinear Circuits </a>
<ul> <li><a href="javascript:goto_page(217)"> Introduction to Nonlinear Elements </a>
<li><a href="javascript:goto_page(221)"> Analytical Solutions </a>
<li><a href="javascript:goto_page(227)"> Graphical Analysis </a>
<li><a href="javascript:goto_page(230)"> Piecewise Linear Analysis </a>
<ul> <li><a href="javascript:goto_page(238)"> Improved Piecewise Linear Models for Nonlinear Elements * </a>
</ul> <li><a href="javascript:goto_page(238)"> Incremental Analysis </a>
<li><a href="javascript:goto_page(253)"> Summary </a>
</ul> <li><a href="javascript:goto_page(267)"> The Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(269)"> Voltage Levels and the Static Discipline </a>
<li><a href="javascript:goto_page(256+24)"> Boolean Logic </a>
<li><a href="javascript:goto_page(258+24)"> Combinational Gates </a>
<li><a href="javascript:goto_page(261+24)"> Standard Sum-of-Products Representation </a>
<li><a href="javascript:goto_page(262+24)"> Simplifying Logic Expressions * </a>
<li><a href="javascript:goto_page(267+24)"> Number Representation </a>
<li><a href="javascript:goto_page(274+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(285+24)"> The MOSFET Switch </a>
<ul> <li><a href="javascript:goto_page(285+24)"> The Switch </a>
<li><a href="javascript:goto_page(288+24)"> Logic Functions Using Switches </a>
<li><a href="javascript:goto_page(298+24)"> The MOSFET Device and Its S Model </a>
<li><a href="javascript:goto_page(291+24)"> MOSFET Switch Implementation of Logic Gates </a>
<li><a href="javascript:goto_page(296+24)"> Static Analysis Using the S Model </a>
<li><a href="javascript:goto_page(300+24)"> The SR Model of the MOSFET </a>
<li><a href="javascript:goto_page(301+24)"> Physical Structure of the MOSFET $*$ </a>
<li><a href="javascript:goto_page(306+24)"> Static Analysis Using the SR Model </a>
<ul> <li><a href="javascript:goto_page(311+24)"> Static Analysis of the \it NAND} Gate Using the SR Model </a>
</ul> <li><a href="javascript:goto_page(314+24)"> Signal Restoration </a>
<ul> <li><a href="javascript:goto_page(314+24)"> Signal Restoration and Gain </a>
<li><a href="javascript:goto_page(317+24)"> Signal Restoration and Nonlinearity </a>
<li><a href="javascript:goto_page(318+24)"> Buffer Characteristics and the Static Discipline </a>
<li><a href="javascript:goto_page(319+24)"> Inverter Transfer Characteristics and the Static Discipline </a>
</ul> <li><a href="javascript:goto_page(320+24)"> Power Consumption in Logic Gates </a>
<li><a href="javascript:goto_page(321+24)"> Active Pullups </a>
<li><a href="javascript:goto_page(322+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(331+24)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(332+24)"> Signal Amplification </a>
<li><a href="javascript:goto_page(332+24)"> Review of Dependent Sources </a>
<li><a href="javascript:goto_page(335+24)"> Actual MOSFET Characteristics</a>
<li><a href="javascript:goto_page(340+24)"> The Switch Current Source (SCS) MOSFET Model </a>
<li><a href="javascript:goto_page(344+24)"> The MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(349+24)"> Biasing the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(352+24)"> The Amplifier Abstraction and the Saturation Discipline </a>
</ul> <li><a href="javascript:goto_page(353+24)"> Large Signal Analysis of the MOSFET Amplifier </a>
<ul> <li><a href="javascript:goto_page(353+24)"> $v_IN}$ versus $v_OUT}$ in the Saturation Region </a>
<li><a href="javascript:goto_page(356+24)"> Valid Input and Output Voltage Ranges </a>
<li><a href="javascript:goto_page(363+24)"> Alternative Method for Valid Input and Output Voltage Ranges </a>z
</ul> <li><a href="javascript:goto_page(385+24)"> Operating Point Selection </a>
<li><a href="javascript:goto_page(386+24)"> Switch Unified (SU) MOSFET Model $*$ </a>
<li><a href="javascript:goto_page(389+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(405+24)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(405+24)"> Overview of the Nonlinear MOSFET Amplifier </a>
<li><a href="javascript:goto_page(405+24)"> The Small Signal Model </a>
<ul> <li><a href="javascript:goto_page(413+24)"> Small Signal Circuit Representation </a>
<li><a href="javascript:goto_page(418+24)"> Small Signal Circuit for the MOSFET Amplifier </a>
<li><a href="javascript:goto_page(420+24)"> Selecting an Operating Point </a>
<li><a href="javascript:goto_page(423+24)"> Input and Output Resistance, Current and Power Gain </a>
</ul> <li><a href="javascript:goto_page(447+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(457+24)"> Energy Storage Elements </a>
<ul> <li><a href="javascript:goto_page(461+24)"> Constitutive Laws </a>
<ul> <li><a href="javascript:goto_page(461+24)"> Capacitors </a>
<li><a href="javascript:goto_page(466+24)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(470+24)"> Series \& Parallel Connections </a>
<ul> <li><a href="javascript:goto_page(471+24)"> Capacitors </a>
<li><a href="javascript:goto_page(472+24)"> Inductors </a>
</ul> <li><a href="javascript:goto_page(473+24)"> Special Examples </a>
<ul> <li><a href="javascript:goto_page(473+24)"> MOSFET Gate Capacitance </a>
<li><a href="javascript:goto_page(476+24)"> Wiring Loop Inductance </a>
<li><a href="javascript:goto_page(477+24)"> IC Wiring Capacitance and Inductance </a>
<li><a href="javascript:goto_page(478+24)"> Transformers * </a>
</ul> <li><a href="javascript:goto_page(480+24)"> Simple Circuit Examples </a>
<ul> <li><a href="javascript:goto_page(482+24)"> Sinusoidal Inputs * </a>
<li><a href="javascript:goto_page(482+24)"> Step Inputs </a>
<li><a href="javascript:goto_page(488+24)"> Impulse Inputs </a>
<li><a href="javascript:goto_page(489+24)"> Role Reversal$*$ </a>
</ul> <li><a href="javascript:goto_page(489+24)"> Energy, Charge and Flux Conservation </a>
<li><a href="javascript:goto_page(492+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(503+24)"> First-order Transients </a>
<ul> <li><a href="javascript:goto_page(504+24)"> Analysis of RC Circuits </a>
<ul> <li><a href="javascript:goto_page(504+24)"> Parallel RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(509+24)"> RC Discharge Transient </a>
<li><a href="javascript:goto_page(511+24)"> Series RC Circuit, Step Input </a>
<li><a href="javascript:goto_page(515+24)"> Series RC Circuit, Square Wave Input </a>
</ul> <li><a href="javascript:goto_page(517+24)"> Analysis of RL Circuits </a>
<ul> <li><a href="javascript:goto_page(517+24)"> Series RL Circuit, Step Input </a>
</ul> <li><a href="javascript:goto_page(520+24)"> Intuitive Analysis </a>
<li><a href="javascript:goto_page(525+24)"> Propagation Delay and the Digital Abstraction </a>
<ul> <li><a href="javascript:goto_page(527+24)"> Definitions </a>
<li><a href="javascript:goto_page(529+24)"> Computing $t_pd}$ from the SRC MOSFET Model </a>
</ul> <li><a href="javascript:goto_page(538+24)"> State and State Variables * </a>
<ul> <li><a href="javascript:goto_page(538+24)"> The Concept of State </a>
<li><a href="javascript:goto_page(540+24)"> Computer Analysis using the State Equation </a>
<li><a href="javascript:goto_page(541+24)"> Zero-input and Zero-state Response </a>
<li><a href="javascript:goto_page(544+24)"> Solution by Integrating Factors* </a>
</ul> <li><a href="javascript:goto_page(545+24)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(545+24)"> Effect of Wire Inductance in Digital Circuits </a>
<li><a href="javascript:goto_page(545+24)"> Ramp Inputs and Linearity </a>
<li><a href="javascript:goto_page(550+24)"> Response of an RC Circuit to Short Pulses and the Impulse Response </a>
<li><a href="javascript:goto_page(553+24)"> Intuitive Method for the Impulse Response </a>
<li><a href="javascript:goto_page(554+24)"> Clock Signals and Clock Fanout </a>
<li><a href="javascript:goto_page(558+24)"> RC Response to Decaying Exponential * </a>
<li><a href="javascript:goto_page(558+24)"> Series RL Circuit with Sinewave Input </a>
</ul> <li><a href="javascript:goto_page(561+24)"> Digital Memory </a>
<ul> <li><a href="javascript:goto_page(561+24)"> The Concept of Digital State </a>
<li><a href="javascript:goto_page(562+24)"> An Abstract Digital Memory Element </a>
<li><a href="javascript:goto_page(563+24)"> Design of the Digital Memory Element </a>
<li><a href="javascript:goto_page(567+24)"> A Static Memory Element </a>
</ul> <li><a href="javascript:goto_page(568+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(595+24)"> Energy and Power in Digital Circuits </a>
<ul> <li><a href="javascript:goto_page(595+24)"> Power and Energy Relations for a Simple RC Circuit </a>
<li><a href="javascript:goto_page(597+24)"> Average Power in an RC Circuit </a>
<ul> <li><a href="javascript:goto_page(599+24)"> Energy Dissipated during Interval $T_1$ </a>
<li><a href="javascript:goto_page(601+24)"> Energy Dissipated during Interval $T_2$ </a>
<li><a href="javascript:goto_page(603+24)"> Total Energy Dissipated </a>
</ul> <li><a href="javascript:goto_page(604+24)"> Power Dissipation in Logic Gates </a>
<ul> <li><a href="javascript:goto_page(604+24)"> Static Power Dissipation </a>
<li><a href="javascript:goto_page(605+24)"> Total Power Dissipation </a>
</ul> <li><a href="javascript:goto_page(611+24)"> NMOS Logic </a>
<li><a href="javascript:goto_page(611+24)"> CMOS Logic </a>
<ul> <li><a href="javascript:goto_page(616+24)"> CMOS Logic Gate Design </a>
</ul> <li><a href="javascript:goto_page(618+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(625+24)"> Transients in Second Order Circuits </a>
<ul> <li><a href="javascript:goto_page(627+24)"> Undriven LC Circuit </a>
<li><a href="javascript:goto_page(640+24)"> Undriven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(644+24)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(648+24)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(649+24)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(651+24)"> Stored Energy in Transient, Series RLC Circuit </a>
<li><a href="javascript:goto_page(654+24)"> Undriven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(654+24)"> Under-Damped Dynamics </a>
<li><a href="javascript:goto_page(654+24)"> Over-Damped Dynamics </a>
<li><a href="javascript:goto_page(654+24)"> Critically-Damped Dynamics </a>
</ul> <li><a href="javascript:goto_page(654+24)"> Driven, Series RLC Circuit </a>
<ul> <li><a href="javascript:goto_page(657+24)"> Step Response </a>
<li><a href="javascript:goto_page(661+24)"> Impulse Response * </a>
</ul> <li><a href="javascript:goto_page(678+24)"> Driven, Parallel RLC Circuit * </a>
<ul> <li><a href="javascript:goto_page(678+24)"> Step Response </a>
<li><a href="javascript:goto_page(678+24)"> Impulse Response </a>
</ul> <li><a href="javascript:goto_page(678+24)"> Intuitive Analysis of Second-Order Circuits </a>
<li><a href="javascript:goto_page(684+24)"> Two-Capacitor Or Two-Inductor Circuits </a>
<li><a href="javascript:goto_page(689+24)"> State-Variable Method * </a>
<li><a href="javascript:goto_page(691+24)"> State-Space Analysis * </a>
<ul> <li><a href="javascript:goto_page(691+24)"> Numerical Solution * </a>
</ul> <li><a href="javascript:goto_page(691+24)"> Higher-Order Circuits* </a>
<li><a href="javascript:goto_page(692+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(703+24)"> Sinusoidal Steady State </a>
<ul> <li><a href="javascript:goto_page(703+24)"> Introduction </a>
<li><a href="javascript:goto_page(706+24)"> Analysis using Complex Exponential Drive </a>
<ul> <li><a href="javascript:goto_page(706+24)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(707+24)"> Particular Solution </a>
<li><a href="javascript:goto_page(710+24)"> Complete Solution </a>
<li><a href="javascript:goto_page(710+24)"> Sinusoidal Steady State Response </a>
</ul> <li><a href="javascript:goto_page(712+24)"> The Boxes: Impedance </a>
<ul> <li><a href="javascript:goto_page(718+24)"> Example: Series RL Circuit </a>
<li><a href="javascript:goto_page(722+24)"> Example: Another RC Circuit </a>
<li><a href="javascript:goto_page(724+24)"> Example: RC Circuit with Two Capacitors </a>
<li><a href="javascript:goto_page(729+24)"> Example: Analysis of Small Signal Amplifier with Capacitive Load </a>
</ul> <li><a href="javascript:goto_page(731+24)"> Frequency Response: Magnitude/Phase vs. Frequency </a>
<ul> <li><a href="javascript:goto_page(732+24)"> Frequency Response of Capacitors, Inductor </a>
<li><a href="javascript:goto_page(737+24)"> Intuitively Sketching th </a>
<li><a href="javascript:goto_page(741+24)"> The Bode Plot: Sketching the Frequency Response of General Functions * </a>
</ul> <li><a href="javascript:goto_page(742+24)"> Filters </a>
<ul> <li><a href="javascript:goto_page(744+24)"> Filter Design Example: Crossover Network </a>
<li><a href="javascript:goto_page(746+24)"> Decoupling Amplifier Stages </a>
</ul> <li><a href="javascript:goto_page(751+24)"> Time Domain </a>
<ul> <li><a href="javascript:goto_page(751+24)"> Frequency Domain Analysis </a>
<li><a href="javascript:goto_page(754+24)"> Time Domain Analysis </a>
<li><a href="javascript:goto_page(756+24)"> Comparing Time Domain and Frequency Domain Analyses </a>
</ul> <li><a href="javascript:goto_page(757+24)"> Power and Energy in an Impedance </a>
<ul> <li><a href="javascript:goto_page(758+24)"> Arbitrary Impedance </a>
<li><a href="javascript:goto_page(760+24)"> Pure Resistance </a>
<li><a href="javascript:goto_page(761+24)"> Pure Reactance </a>
<li><a href="javascript:goto_page(763+24)"> Example: Power in an RC Circuit </a>
</ul> <li><a href="javascript:goto_page(765+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(777+24)"> Sinusoidal Steady State: Resonance </a>
<ul> <li><a href="javascript:goto_page(777+24)"> Parallel RLC, Sinusoidal Response </a>
<ul> <li><a href="javascript:goto_page(778+24)"> Homogeneous Solution </a>
<li><a href="javascript:goto_page(780+24)"> Particular Solution </a>
<li><a href="javascript:goto_page(781+24)"> Total Solution for the Parallel RLC Circuit </a>
</ul> <li><a href="javascript:goto_page(783+24)"> Frequency Response for Resonant Systems </a>
<ul> <li><a href="javascript:goto_page(792+24)"> The Resonant Region of the Frequency Response </a>
</ul> <li><a href="javascript:goto_page(801+24)"> Series RLC </a>
<li><a href="javascript:goto_page(808+24)"> The Bode Plot for Resonant Functions * </a>
<li><a href="javascript:goto_page(808+24)"> Filter Examples </a>
<ul> <li><a href="javascript:goto_page(809+24)"> Bandpass Filter </a>
<li><a href="javascript:goto_page(810+24)"> Lowpass Filter </a>
<li><a href="javascript:goto_page(812+24)"> Highpass Filter </a>
<li><a href="javascript:goto_page(815+24)"> Notch Filter </a>
</ul> <li><a href="javascript:goto_page(816+24)"> Stored Energy in a Resonant Circuit </a>
<li><a href="javascript:goto_page(821+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(837+24)"> The Operational Amplifier Abstraction </a>
<ul> <li><a href="javascript:goto_page(837+24)"> Introduction </a>
<ul> <li><a href="javascript:goto_page(838+24)"> Historical Perspective </a>
</ul> <li><a href="javascript:goto_page(839+24)"> Device Properties of the Operational Amplifier </a>
<ul> <li><a href="javascript:goto_page(839+24)"> The Op Amp Model </a>
</ul> <li><a href="javascript:goto_page(842+24)"> Simple Op Amp Circuits </a>
<ul> <li><a href="javascript:goto_page(842+24)"> The Non-inverting Op Amp </a>
<li><a href="javascript:goto_page(844+24)"> A Second Example: The Inverting Connection </a>
<li><a href="javascript:goto_page(846+24)"> Sensitivity </a>
<li><a href="javascript:goto_page(847+24)"> A Special Case: The Voltage Follower </a>
<li><a href="javascript:goto_page(848+24)"> An Additional Constraint: $v^+ - v^- \simeq 0$ </a>
</ul> <li><a href="javascript:goto_page(849+24)"> Input and Output Resistances </a>
<ul> <li><a href="javascript:goto_page(849+24)"> Output Resistance, Inverting Op Amp </a>
<li><a href="javascript:goto_page(851+24)"> Input Resistance, Inverting Connection </a>
<li><a href="javascript:goto_page(853+24)"> Input and Output R for Non-Inverting Op Amp </a>
<li><a href="javascript:goto_page(855+24)"> Generalization on Input Resistance * </a>
<li><a href="javascript:goto_page(855+24)"> Example: Op Amp Current Source </a>
</ul> <li><a href="javascript:goto_page(857+24)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(858+24)"> Adder </a>
<li><a href="javascript:goto_page(858+24)"> Subtracter </a>
</ul> <li><a href="javascript:goto_page(859+24)"> Op Amp RC Circuits </a>
<ul> <li><a href="javascript:goto_page(859+24)"> Op Amp Integrator </a>
<li><a href="javascript:goto_page(862+24)"> Op Amp Differentiator </a>
<li><a href="javascript:goto_page(863+24)"> An RC Active Filter </a>
<li><a href="javascript:goto_page(865+24)"> The RC Active Filter -- Impedance Analysis </a>
<li><a href="javascript:goto_page(866+24)"> Sallen-Key Filter </a>
</ul> <li><a href="javascript:goto_page(866+24)"> Op Amp in Saturation </a>
<ul> <li><a href="javascript:goto_page(867+24)"> Op Amp Integrator in Saturation </a>
</ul> <li><a href="javascript:goto_page(869+24)"> Positive Feedback </a>
<ul> <li><a href="javascript:goto_page(869+24)"> RC Oscillator </a>
</ul> <li><a href="javascript:goto_page(872+24)"> Two-ports* </a>
<li><a href="javascript:goto_page(873+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(905+24)"> Diodes </a>
<ul> <li><a href="javascript:goto_page(905+24)"> Introduction </a>
<li><a href="javascript:goto_page(905+24)"> Semiconductor Diode Characteristics </a>
<li><a href="javascript:goto_page(908+24)"> Analysis of Diode Circuits </a>
<ul> <li><a href="javascript:goto_page(908+24)"> Method of Assumed States </a>
</ul> <li><a href="javascript:goto_page(912+24)"> Nonlinear Analysis with RL and RC </a>
<ul> <li><a href="javascript:goto_page(912+24)"> Peak Detector</a>
<li><a href="javascript:goto_page(915+24)"> Example: Clamping Circuit </a>
<li><a href="javascript:goto_page(918+24)"> A Switched Power Supply Using a Diode </a>
</ul> <li><a href="javascript:goto_page(918+24)"> Additional Examples </a>
<ul> <li><a href="javascript:goto_page(918+24)"> Piecewise Linear Example: Clipping Circuit </a>
<li><a href="javascript:goto_page(918+24)"> Exponentiation Circuit </a>
<li><a href="javascript:goto_page(918+24)"> Piecewise Linear Example: Limiter </a>
<li><a href="javascript:goto_page(918+24)"> Example: Full-Wave Diode Bridge </a>
<li><a href="javascript:goto_page(918+24)"> Incremental Example: Zener Diode Regulator </a>
<li><a href="javascript:goto_page(918+24)"> Incremental Example: Diode Attenuator </a>
</ul> <li><a href="javascript:goto_page(919+24)"> Summary </a>
</ul> <li><a href="javascript:goto_page(927+24)"> Maxwell's Equations and the LMD </a>
<ul> <li><a href="javascript:goto_page(927+24)"> The Lumped Matter Discipline </a>
<ul> <li><a href="javascript:goto_page(927+24)"> The First Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(930+24)"> The Second Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(932+24)"> The Third Constraint of the Lumped Matter Discipline </a>
<li><a href="javascript:goto_page(933+24)"> The Lumped Matter Discipline Applied to Circuits </a>
</ul> <li><a href="javascript:goto_page(934+24)"> Deriving Kirchhoff's Laws </a>
<li><a href="javascript:goto_page(936+24)"> Deriving the Resistance of a Piece of Material </a>
</ul> <li><a href="javascript:goto_page(941+24)"> Trigonometric Functions \& Identities </a>
<ul> <li><a href="javascript:goto_page(941+24)"> Negative Arguments </a>
<li><a href="javascript:goto_page(942+24)"> Phase-Shifted Arguments </a>
<li><a href="javascript:goto_page(942+24)"> Sum and Difference Arguments </a>
<li><a href="javascript:goto_page(943+24)"> Products </a>
<li><a href="javascript:goto_page(943+24)"> Half-Angle \& Twice-Angle Arguments </a>
<li><a href="javascript:goto_page(943+24)"> Squares </a>
<li><a href="javascript:goto_page(943+24)"> Miscellaneous </a>
<li><a href="javascript:goto_page(944+24)"> Taylor Series Expansions </a>
<li><a href="javascript:goto_page(944+24)"> Relations to $e^j\theta}$ </a>
</ul> <li><a href="javascript:goto_page(947+24)"> Complex Numbers </a>
<ul> <li><a href="javascript:goto_page(947+24)"> Magnitude and Phase</a>
<li><a href="javascript:goto_page(948+24)"> Polar Representation </a>
<li><a href="javascript:goto_page(949+24)"> Addition and Subtraction </a>
<li><a href="javascript:goto_page(949+24)"> Multiplication and Division </a>
<li><a href="javascript:goto_page(950+24)"> Complex Conjugate </a>
<li><a href="javascript:goto_page(951+24)"> Properties of $e^j\theta}$ </a>
<li><a href="javascript:goto_page(951+24)"> Rotation </a>
<li><a href="javascript:goto_page(952+24)"> Complex Functions of Time </a>
<li><a href="javascript:goto_page(952+24)"> Numerical Examples </a>
</ul> <li><a href="javascript:goto_page(957+24)"> Solving Simultaneous Linear Equations </a>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Licensing Information </h1>
<table><tr><td> Videos and Ungraded Exercises </td> <td> <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-sa/3.0/80x15.png" /></a><br />The videos on this page are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Graded Exercises</td><td>Graded exercises are All Rights Reserved until the due date. Past the due date, they are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Textbook</td><td>Textbook is All Rights Reserved Elsevier. We are using it with permission. We apologize for the inclusion of proprietary work. </td></tr>
<tr><td>Student-generated content</td><td>Due to privacy concerns, all forum posts, wiki etc, and other student-created works are All Rights Reserved until released otherwise by MIT. </td></tr>
<tr><td>Source Code</td><td>Source code is All Rights Reserved during the beta offering. We expect to release it under a free and open license shortly thereafter. </td></tr>
</table>
<p>MIT and MITx are trademarks of the Massachusetts Instititute of
Technology, and may not be used without permission.
</section>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Honor Code </h1>
<ul>
<li> I agree to not engage in any activities that would dishonestly improve my results, or improve or hurt those of others.
<l1> I agree to never post answers to problems.
<li> I agree to maintain only one account.
</ul>
</section>
<%inherit file="main.html" />
<%inherit file="marketing.html" />
<header class="announcement">
<header class="announcement course">
<div class="anouncement-wrapper">
<nav>
<h1><a href="/t/mitx_global.html">MITx</a></h1>
<a class="modal login" href="#login">Log In</a>
</nav>
<section class="course">
<h2>6.002</h2>
<h1>Circuits &amp; Electronics</h1>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, "6.002 Circuits and Electronics" is an on-line adaption of MIT's first undergraduate analog design course. This course will run, free of charge, for students worldwide from February 1, 2012 through July 1, 2012.</p>
<a class="modal enroll" href="#enroll">Enroll in 6.002 Circuits &amp; Electronics</a>
<section>
<h1>Circuits &amp; Electronics</h1>
<h2>6.002</h2>
<a class="modal enroll" href="#enroll">Enroll in 6.002 Circuits <span>&amp;</span> Electronics</a>
</section>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, &ldquo;6.002x Circuits and Electronics&rdquo; is an experimental on-line adaption of MIT's first undergraduate analog design course 6.002. This course will run, free of charge, for students worldwide from February 21, 2012 through June&nbsp;10,&nbsp;2012.</p>
</section>
</div>
......@@ -20,57 +23,67 @@
<section class="index-content">
<section class="about-course">
<section>
<section class="about-info">
<h1>About 6.002</h1>
<p> 6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.</p>
<p> The course introduces engineering in the context of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.</p>
<p>6.002x is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.</p>
<p>The course introduces engineering in the context of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. Students should expect to spend approximately 10 hours per week on the course. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.</p>
<!-- <p> The course uses the textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. While recommended, the book is not required -- relevant section will be provided electronically as part of the on-line course.</p> -->
</section>
<section>
<h1>6.002 on <a href="/t/mitx_global.html">MITx</a></h1> <!-- Link doesn't need to be here, but there should be some way to get back to main MITx site -->
<section class="on-mitx">
<h1>6.002 on MITx</h1> <!-- Link doesn't need to be here, but there should be some way to get back to main MITx site -->
<p> Students who successfully complete the course will receive an electronic certificate of accomplishment from MIT. Students will not receive course credit, but students successfully finishing the course will be well-placed to take an exam to pass out of 6.002 should they ever enroll at MIT, and potentially, similar courses at other schools.</p>
<p>Students who successfully complete the course will receive an electronic certificate of accomplishment from MIT. Since this is an experimental version of the course, the certificate will be marked as Beta.</p>
<p> In order to succeed in this course, students must have some background in calculus and differential equations. Since more advanced mathematics will not show up until the second half of the course, the first half of the course will include an optional remedial differential equations component for students with weaker math backgrounds.</p>
<p> The course uses the textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. While recommended, the book is not required -- relevant sections will be provided electronically as part of the on-line course. The book can be purchased on <a href="http://www.amazon.com/exec/obidos/ASIN/1558607358/ref=nosim" target="_blank">Amazon</a>. Copyright for the book is with Elsevier and the book cannot be printed etc.</p>
</section>
<section class="requirements">
<h1> Requirements </h1>
<p> Students entering the course are expected to know how basic calculus and differential equations, as well as basic linear algebra. In addition, a background in E&amp;M is helpful, although not critical.</p>
<p>In order to succeed in this course, students must have taken an AP level physics course in electricity and magnetism. Students must know basic calculus and linear algebra, and have some background in differential equations. Since more advanced mathematics will not show up until the second half of the course, the first half of the course will include an optional remedial differential equations component for students with weaker math backgrounds.</p>
<p> The course web site was developed and tested primarily with Google Chrome. We support Mozilla Firefox as well. While we will attempt to make it possible to complete the course with Internet Explorer, portions of the web site functionality will be unavailable. The videos require Flash. </p>
<p>The course web site was developed and tested primarily with Google Chrome. We support Mozilla Firefox as well. While we will attempt to make it possible to complete the course with Internet Explorer, portions of the web site functionality will be unavailable. The videos require Flash.</p>
</section>
<section class="cta">
<a class="modal enroll" href="#enroll">Enroll in Circuits &amp; Electronics</a>
</section>
</section>
<section class="staff">
<h1>About the course staff</h1>
<ul>
<li>
<img src="/static/staff/agarwal-mit-news-small.jpg">
<h2>Anant Agarwal</h2>
<p><img src="/static/staff/agarwal-mit-news-small.jpg">The Director of MIT's Computer Science and Artificial Intelligence Laboratory. His research focus is in parallel computer architectures, and he is the founder of several successful startups. Most recently, he founded Tilera, which produces scalable multicore embedded processors. He co-author the course textbook "Foundations of Analog and Digital Electronic Circuits."</p></li>
<p>The Director of MIT's Computer Science and Artificial Intelligence Laboratory. His research focus is in parallel computer architectures, and he is the founder of several successful startups. Most recently, he founded Tilera, which produces scalable multicore embedded processors. He co-author the course textbook "Foundations of Analog and Digital Electronic Circuits."</p></li>
<li>
<img src="/static/staff/cjt-small.jpg">
<h2>Chris Terman</h2>
<p><img src="/static/staff/cjt-small.jpg">The Co-Director MIT CSAIL, and a highly regarded instructor. He is the author of JSim, an educational package for on-line circuit schematic entry and simulation, and XTutor, and on-line question-and-answer tutoring system.</p></li>
<p>The Co-Director MIT CSAIL, and a highly regarded instructor. He is the author of JSim, an educational package for on-line circuit schematic entry and simulation, and XTutor, and on-line question-and-answer tutoring system.</p></li>
<li>
<img src="/static/staff/gjs-small.jpg">
<h2>Gerald Sussman</h2>
<p><img src="/static/staff/gjs-small.jpg">A Professor of Electrical Engineering at MIT. He is a well know educator in the computer science community, perhaps best know as the author of Structure and Interpretation of Computer Programs, which is universally acknowledged as one of the top ten textboooks in computer science, or as the creator of Scheme, a popular teaching language. His research spans a range of topics, from artificial intelligence, to physics and chaotic systems, to supercomputer design.</p></li>
<p>A Professor of Electrical Engineering at MIT. He is a well know educator in the computer science community, perhaps best know as the author of Structure and Interpretation of Computer Programs, which is universally acknowledged as one of the top ten textboooks in computer science, or as the creator of Scheme, a popular teaching language. His research spans a range of topics, from artificial intelligence, to physics and chaotic systems, to supercomputer design.</p></li>
<li>
<img src="/static/staff/pmitros-small.jpg">
<h2>Piotr Mitros</h2>
<p><img src="/static/staff/pmitros-small.jpg">A Research Scientist at MIT. His research focus is in finding ways to apply techniques from control systems to optimizing the learning process. Piotr has worked as an analog designer at Texas Instruments, Talking Lights, and most recently, designed the analog front end for a novel medical imaging modality for Rhythmia Medical.</p></li>
<p>A Research Scientist at MIT. His research focus is in finding ways to apply techniques from control systems to optimizing the learning process. Piotr has worked as an analog designer at Texas Instruments, Talking Lights, and most recently, designed the analog front end for a novel medical imaging modality for Rhythmia Medical.</p></li>
</ul>
</section>
<div class="secondary">
<!-- <div class="secondary"> -->
<!-- <section class="credits"> -->
<!-- <h1> Credits </h1> -->
......@@ -85,10 +98,7 @@
<!-- <p> The system is running in the Amazon cloud, which allows us to hold up to anticipated loads. </p> -->
<!-- </section> -->
<section>
<a class="modal enroll" href="#enroll">Enroll in Circuits &amp; Electronics</a>
</section>
</div>
<!-- </div> -->
</section>
<div style="display:none">
......
......@@ -6,6 +6,7 @@
<link rel="stylesheet" href="/static/lib/jquery.treeview.css" type="text/css" media="all" />
<link rel="stylesheet" href="/static/css/application.css" type="text/css" media="all" />
<link href="/static/css/jquery-ui-1.8.16.custom.css" rel="stylesheet" type="text/css"/>
<link href="/static/css/print.css" rel="stylesheet" type="text/css" media="print"/>
<script type="text/javascript" src="/static/lib/jquery-1.6.2.min.js"></script>
<script type="text/javascript" src="/static/lib/jquery-ui-1.8.16.custom.min.js"></script>
......@@ -13,6 +14,7 @@
<script type="text/javascript" src="/static/lib/jquery.treeview.js"></script>
<script type="text/javascript" src="/static/js/video_player.js"></script>
<script type="text/javascript" src="/static/js/schematic.js"></script>
<script type="text/javascript" src="/static/js/cktsim.js"></script>
<!-- Warning: Do not upgrade FancyBox. V2.0 is under a non-free CC license -->
<script type="text/javascript" src="/static/lib/fancybox/jquery.fancybox-1.3.4.js"></script>
......
<!DOCTYPE html>
<html>
<head>
<%block name="title"><title>MITX 6.002</title></%block>
<link rel="stylesheet" href="/static/lib/jquery.treeview.css" type="text/css" media="all" />
<link rel="stylesheet" href="/static/css/marketing.css" type="text/css" media="all" />
<script type="text/javascript" src="/static/lib/jquery-1.6.2.min.js"></script>
<script type="text/javascript" src="/static/lib/jquery-ui-1.8.16.custom.min.js"></script>
<!-- Warning: Do not upgrade FancyBox. V2.0 is under a non-free CC license -->
<script type="text/javascript" src="/static/lib/fancybox/jquery.fancybox-1.3.4.js"></script>
<link rel="stylesheet" href="/static/lib/fancybox/jquery.fancybox-1.3.4.css">
<script type="text/javascript" src="/static/lib//swfobject/swfobject.js"></script>
<script type="text/javascript" src="/static/lib/jquery.treeview.js"></script>
<script type="text/javascript" src="/static/js/video_player.js"></script>
<script type="text/javascript" src="/static/js/schematic.js"></script>
<script>
$(function() {
// Set up FancyBox pop-ups
$("a.modal").fancybox({
'hideOnContentClick': false
});
});
</script>
<%block name="headextra"/>
</head>
<body>
${self.body()}
<%block name="bodyextra"/>
<footer>
<!-- Template based on a design from http://www.dotemplate.com/ - Donated $10 (pmitros) so we don't need to include credit. -->
<div class="footer-wrapper">
<p> Copyright (c). 2011. MIT. <a href="/t/copyright.html">Some rights reserved.</a></p>
<ul>
<li><a href="/t/tos.html">Terms of service</a></li>
<li><a href="/t/privacy.html">Privacy Policy</a></li>
<li><a href="/t/honor.html">Honor Code</a></li>
</ul>
</div>
</footer>
<div style="display:none">
<div id="feedback_div">
Found a bug? Got an idea for improving our system? Let us know.
<form>
<ol>
<li><label>Subject:</label> <input id="feedback_subject" size=40></li>
<li><label>Feedback: </label><textarea id="feedback_message" cols="40" rows="5"></textarea></li>
<li><input id="feedback_button" type="button" value="Submit"></li>
</ol>
</form>
</div>
</div>
<div style="display:none">
<div id="calculator_div">
<input id="calculator_input" >
<input id="calculator_button" type=button value="=&gt;">
<input id="calculator_output" readonly>
<p>Supported operations: ^ * / + - || ()</p>
<p>Supported suffixes: %kMGTcmunp</p>
</div>
</div>
<script>
// Feedback form
$(function() {
$("#feedback_button").click(function(){
postJSON("/send_feedback", {"subject":$("#feedback_subject").attr("value"),
"url":document.URL,
"message":$("#feedback_message").attr("value")},
function(data){
$("#feedback_subject").attr("value","");
$("#feedback_message").attr("value","");
$("#feedback_div").html("Feedback submitted. Thank you");
});
});
});
// Calculator
$(function() {
$("#calculator_button").click(function(){
$.getJSON("/calculate", {"equation":$("#calculator_input").attr("value")},
function(data){
$("#calculator_output").attr("value",data.result);
});
});
});
</script>
</body>
</html>
<%inherit file="main.html" />
<%inherit file="marketing.html" />
<header class="announcement">
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>An MIT Education Anywhere. <br />For free.</h1>
<p>MITx is an open learning software available free of cost, so that others &mdash; whether other universities or different educational institutions, such as K&ndash;12 school systems &mdash; can leverage the same software for their online education offerings.</p>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<section class="about">
<h1>About MITx</h1>
<p>MITx is a portfolio of MIT courses through an online interactive learning platform that:</p>
<h1>MITx is MIT&rsquo;s online learning initiative.</h1>
<section class="intro">
<p>This learning platform will enhance the educational experience of its on-campus students, offering them online tools that supplement and enrich their classroom and laboratory experiences. It will also be host to a virtual community of learners around the world.</p>
<p>The first course offered by MITx in an experimental prototype form is 6.002x Circuits and Electronics. Watch this space for the next set of courses that will become available in Fall 2012.</p>
</section>
<ul>
<li>organizes and presents course material to enable students to learn at their own pace</li>
<li>features interactivity, online laboratories and student-to-student communication</li>
<li>allows for the individual assessment of any student&rsquo;s work and allow students who demonstrate their mastery of subjects to earn a certificate of completion awarded by MITx</li>
<li>operates on an open-source, scalable software infrastructure in order to make it continuously improving and readily available to other educational institutions.</li>
</ul>
<section class="features">
<h2>It will offer a portfolio of MIT courses for free on an online learning platform that:</h2>
<p>This learning platform will enhance the educational experience of its on-campus students, offering them online tools that supplement and enrich their classroom and laboratory experiences. It will also be host to a virtual community learners around the world.</p>
<ul>
<li>organizes and presents course material to enable students to learn at their own pace</li>
<li>features interactivity, online laboratories and student-to-student communication</li>
<li>allows for the individual assessment of any student&rsquo;s work and allow students who demonstrate their mastery of subjects to earn a certificate of completion awarded by MITx</li>
<li>operates on an open-source, scalable software infrastructure in order to make it continuously improving and readily available to other educational institutions.</li>
</ul>
<p><strong>Press &amp; links:</strong> <a href="http://www.boston.com/news/local/massachusetts/articles/2011/12/19/mit_to_launch_online_only_graded_courses_free_to_all/?page=full" target="_blank">Boston Globe</a>, <a href="http://www.nytimes.com/2011/12/19/education/mit-expands-free-online-courses-offering-certificates.html?_r=3&hpw=" target="_blank">New York Times</a>, <a href="http://web.mit.edu/newsoffice/2011/mitx-education-initiative-1219.html" target="_blank">MIT Press Release</a>, <a href="http://web.mit.edu/newsoffice/2011/mitx-faq-1219" target="_blank">MITx FAQ</a></p>
</section>
</section>
<section>
<h1>Course offering</h1>
<h2>6.002 Circuits and Electronics</h2>
<p> Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, "6.002 Circuits and Electronics" is an on-line adaption of MIT's first undergraduate analog design course. This course will run, free of charge, for students worldwide from February 1, 2012 through July 1, 2012.</p>
<section class="course">
<hgroup>
<h1>Spring 2012 Course offering</h1>
<h2>Circuits and Electronics</h2>
<h3>6.002x</h3>
</hgroup>
<p>
<a href="/" class="more-info">More information about Circuits and Electronics</a>
<a href="/" class="more-info">More information <span>&amp;</span> Enroll</a>
</p>
<p>Taught by Anant Agarwal, with Gerald Sussman, Piotr Mitros, and Chris Terman, &ldquo;6.002 Circuits and Electronics&rdwuo; is an on-line adaption of MIT's first undergraduate analog design course. This prototype course will run, free of charge, for students worldwide from February 21, 2012 through June 10, 2012. Students will be given the opportunity to demonstrate their mastery of the material and earn a certificate from MITx.</p>
</section>
<div style="display:none">
......@@ -52,7 +64,8 @@
</section>
<script>
<script>
$(function() {
/* Set up FancyBox pop-ups */
......@@ -122,5 +135,4 @@ $(function() {
/*$("sregion"+$("[id^=spinner_]")[1].id.substring(7)) */
});
</script>
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Privacy Policy </h1>
</section>
// Functions
//---------------------------------------- //
// Flexible grid
@function flex-grid($columns, $container-columns: $fg-max-columns) {
$width: $columns * $fg-column + ($columns - 1) * $fg-gutter;
$container-width: $container-columns * $fg-column + ($container-columns - 1) * $fg-gutter;
@return percentage($width / $container-width);
}
// Flexible grid gutter
@function flex-gutter($container-columns: $fg-max-columns, $gutter: $fg-gutter) {
$container-width: $container-columns * $fg-column + ($container-columns - 1) * $fg-gutter;
@return percentage($gutter / $container-width);
}
// Line-height
@function lh($amount: 1) {
@return $lh * $amount;
}
// Variables
//---------------------------------------- //
// // grid
$fg-column: 60px;
$fg-gutter: 25px;
$fg-max-columns: 12;
$fg-max-width: 1400px;
$fg-min-width: 810px;
$gw-column: 60px;
$gw-gutter: 25px;
$body-font-family: Georgia, serif;
$header-font-family: "Open Sans", Helvetica, Arial, sans-serif;
// @media screen and (min-width: 940px) {
$body-font-size: 16px;
// }
// @media screen and (max-width: 939px) {
// $body-font-size: 14px;
// }
$lh: golden-ratio($body-font-size, 1);
$mit-red: #990000;
@font-face {
font-family: 'Oswald';
font-family: 'Open Sans';
font-style: normal;
font-weight: normal;
src: local('Oswald '), local('Oswald'), url('http://themes.googleusercontent.com/static/fonts/oswald/v3/qpy-UiLNKP-VfOdbcs6r6-vvDin1pK8aKteLpeZ5c0A.woff') format('woff');
font-weight: 400;
src: local('Open Sans'), local('OpenSans'), url('http://themes.googleusercontent.com/static/fonts/opensans/v6/cJZKeOuBrn4kERxqtaUH3bO3LdcAZYWl9Si6vvxL-qU.woff') format('woff');
}
@font-face {
font-family: 'Open Sans';
font-style: normal;
font-weight: 800;
src: local('Open Sans Extrabold'), local('OpenSans-Extrabold'), url('http://themes.googleusercontent.com/static/fonts/opensans/v6/EInbV5DfGHOiMmvb1Xr-hqRDOzjiPcYnFooOUGCOsRk.woff') format('woff');
}
// Extends
//---------------------------------------- //
.wrapper {
@include box-sizing(border-box);
margin: 0 auto;
max-width: $fg-max-width;
min-width: $fg-min-width;
padding: lh();
width: flex-grid(12);
}
.clearfix:after {
content: ".";
display: block;
height: 0;
clear: both;
visibility: hidden;
}
.button {
@include border-radius(3px);
@include border-radius(3px);
@include inline-block();
@include transition();
background-color: $mit-red;
color: #fff;
margin: lh() 0 lh(.5);
padding: lh(.25) lh(.5);
text-decoration: none;
&:hover {
background-color: darken($mit-red, 10%);
}
span {
font-family: Garamond, Baskerville, "Baskerville Old Face", "Hoefler Text", "Times New Roman", serif;
font-style: italic;
}
}
body {
background-color: #fff;
color: #444;
font: $body-font-size $body-font-family;
#{$all-text-inputs}, textarea {
@include box-shadow(0 -1px 0 #fff);
@include linear-gradient(#eee, #fff);
border: 1px solid #999;
font: $body-font-size $body-font-family;
padding: 4px;
width: 100%;
&:focus {
border-color: $mit-red;
}
}
}
header.announcement {
background: $mit-red;
border-top: 3px solid darken($mit-red, 10%);
color: #fff;
border-bottom: 1px solid #000;
background: #e3e3e3;
@include background-size(cover);
&.home {
@media screen and (min-width: 1200px) {
background: #e3e3e3 url("/static/images/marketing/shot-1-large.jpg");
}
@media screen and (max-width: 1199px) {
background: #e3e3e3 url("/static/images/marketing/shot-1-medium.jpg");
}
div {
padding: lh(10) lh() lh(3);
}
}
&.course {
@media screen and (min-width: 1200px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-large.jpg");
}
@media screen and (max-width: 1199px) and (min-width: 700px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-medium.jpg");
@include background-size(cover);
}
@media screen and (max-width: 699px) {
background: #e3e3e3 url("/static/images/marketing/course-bg-small.jpg");
@include background-size(cover);
}
div {
padding: lh(4) lh() lh(2);
}
}
div {
@extend .wrapper;
padding: 80px $body-line-height 60px;
position: relative;
@include box-sizing(border-box);
nav {
position: absolute;
top: 20px;
right: 0;
top: 0;
right: lh();
@include border-radius(0 0 3px 3px);
background: rgba(#000, .7);
padding: lh(.5);
h1 {
@include inline-block();
margin-right: lh();
a {
font: 800 18px $header-font-family;
color: #fff;
text-decoration: none;
}
}
a.login {
text-transform: uppercase;
text-decoration: none;
color: #fff;
font-size: 12px;
margin-right: 20px;
text-shadow: 0 -1px 0 darken($mit-red, 10%);
&:hover {
color: rgba(#fff, .6);
......@@ -36,157 +151,297 @@ header.announcement {
section {
@extend .clearfix;
padding-left: grid-width(3);
@include inline-block();
background: $mit-red;
margin-left: flex-grid(4) + flex-gutter();
padding: lh() lh(1.5);
h1 {
font-family: "Oswald";
font-size: 62px;
@include inline-block();
font-family: "Open Sans";
font-size: 30px;
font-weight: 800;
line-height: 1.2em;
margin: 0;
text-transform: uppercase;
text-shadow: 0 -2px 0 darken($mit-red, 10%);
margin: 0 lh() 0 0;
}
p {
line-height: 1.6em;
max-width: 700px;
margin: 2em 0 0;
h2 {
@include inline-block();
font-family: "Open Sans";
font-size: 24px;
font-weight: 400;
line-height: 1.2em;
}
&.course {
padding-left: grid-width(4) + $gw-gutter;
a.enroll {
@include button(#fff);
@include inline-block();
@include box-shadow(0 1px 0 lighten($mit-red, 10%));
margin-top: lh();
font-size: 18px;
padding: lh(.5);
border-color: darken($mit-red, 10%);
&:hover {
text-decoration: none;
section {
width: flex-grid(4, 8);
margin-right: flex-gutter(8);
float: left;
margin-left: 0;
padding: 0;
a {
@extend .button;
background-color: darken($mit-red, 20%);
display: block;
padding: lh(.5) lh();
text-align: center;
&:hover {
background-color: darken($mit-red, 10%);
}
}
}
p {
width: flex-grid(4, 8);
line-height: lh();
float: left;
}
}
}
}
}
section.index-content {
@extend .main-content;
@extend .wrapper;
@include box-sizing(border-box);
padding: lh();
@extend .clearfix;
section {
width: grid-width(6);
@extend .clearfix;
float: left;
&.about {
margin-right: $gw-gutter;
h1 {
font-size: 24px;
font-weight: 800;
font-family: "Open Sans";
margin-bottom: lh();
}
&.about-course {
width: grid-width(12);
float: none;
@extend .clearfix;
p {
line-height: lh();
margin-bottom: lh();
}
ul {
margin: 0;
// list-style: disc outside none;
// li {
// list-style: disc outside none;
// }
}
&.about {
@include box-sizing(border-box);
border-right: 1px solid #e5e5e5;
margin-right: flex-gutter();
padding-right: flex-gutter() / 2;
width: flex-grid(8);
section {
width: grid-width(4);
margin-right: $gw-gutter;
@extend .clearfix;
margin-bottom: lh();
&.requirements {
margin-right: 0;
p {
width: flex-grid(4, 8);
float: left;
&:nth-child(odd) {
margin-right: flex-gutter(8);
}
}
&.features {
border-top: 1px solid #E5E5E5;
padding-top: lh();
margin-bottom: 0;
h2 {
text-transform: uppercase;
letter-spacing: 1px;
color: #666;
margin-bottom: lh();
}
p {
width: auto;
strong {
font-family: "Open sans";
font-weight: 800;
}
a {
color: $mit-red;
text-decoration: none;
@include transition();
&:hover, &:focus {
color: darken($mit-red, 15%);
}
}
}
ul {
margin-bottom: 0;
li {
line-height: lh();
width: flex-grid(4, 8);
float: left;
margin-bottom: lh(.5);
&:nth-child(odd) {
margin-right: flex-gutter(8);
}
}
}
}
}
}
&.staff {
@extend .clearfix;
border-top: 1px solid #eee;
float: none;
width: grid-width(12);
margin-top: lh();
padding-top: lh();
&.course, &.staff {
width: flex-grid(4);
ul {
list-style: none;
margin: 0;
h1 {
font: normal $body-font-size $body-font-family;
text-transform: uppercase;
letter-spacing: 1px;
color: #666;
margin-bottom: lh();
}
li {
width: grid-width(3);
list-style: none;
float: left;
margin-right: $gw-gutter;
h2 {
font: 800 24px $header-font-family;
}
h3 {
font: 400 18px $header-font-family;
}
a {
@extend .button;
}
ul {
li {
img {
float: left;
margin: 0 1em 1em 0;
}
&:last-child {
margin-right: 0;
margin-right: lh(.5);
}
}
}
}
h1 {
font-size: 34px;
margin-top: 0;
font-family: "Oswald";
&.course {
h2 {
padding-top: lh(5);
background: url('/static/images/marketing/circuits-bg.jpg') 0 0 no-repeat;
@include background-size(contain);
@media screen and (max-width: 998px) {
background: url('/static/images/marketing/circuits-medium-bg.jpg') 0 0 no-repeat;
}
}
}
ul {
margin: 0 grid-width(1) 1em;
list-style: disc outside none;
li {
list-style: disc outside none;
// index
//---------------------------------------- //
&.about-course {
@include box-sizing(border-box);
border-right: 1px solid #e5e5e5;
margin-right: flex-gutter();
padding-right: flex-gutter() / 2;
width: flex-grid(8);
section {
width: flex-grid(4, 8);
&.about-info {
margin-right: flex-gutter(8);
}
&.requirements {
clear: both;
width: auto;
border-top: 1px solid #E5E5E5;
padding-top: lh();
margin-bottom: 0;
p {
float: left;
width: flex-grid(4, 8);
margin-right: flex-gutter(8);
&:nth-child(odd) {
margin-right: 0;
}
}
}
&.cta {
width: 100%;
a.enroll {
@extend .button;
padding: lh(.5) lh();
display: block;
text-align: center;
font: 800 18px $header-font-family;
}
}
}
}
}
}
p {
line-height: 1.5;
}
footer {
@extend .wrapper;
@extend .clearfix;
padding-top: 0;
a.more-info {
// @extend .button;
@include button(simple, $mit-red);
@include inline-block();
margin-top: lh();
font-size: 18px;
padding: lh(.5);
div.footer-wrapper {
border-top: 1px solid #e5e5e5;
padding: lh() 0;
background: url('/static/images/marketing/mit-logo.png') right center no-repeat;
&:hover {
text-decoration: none;
a {
color: #888;
text-decoration: none;
@include transition();
&:hover, &:focus {
color: #666;
}
}
}
div.secondary {
border-top: 1px solid #eee;
margin-top: lh();
padding-top: lh();
p {
@include inline-block();
margin-right: lh();
}
section {
text-align: center;
width: auto;
float: none;
ul {
@include inline-block();
a.enroll {
@include button(simple, $mit-red);
li {
@include inline-block();
margin-top: lh();
font-size: 18px;
padding: lh(.5);
&:hover {
text-decoration: none;
&:after {
content: ' |';
display: inline;
color: #ccc;
}
&:last-child {
&:after {
content: none;
}
}
}
}
}
......
......@@ -12,7 +12,6 @@
@import "textbook";
@import "profile";
@import "wiki-create", "wiki";
@import "index";
@import "activation";
// left over
......
@import "bourbon/bourbon";
@import "reset";
// pages
@import "index-functions", "index-variables", "index";
@import "fancybox";
<span>
<input type="hidden" class="schematic" height="${height}" width="${width}" name="input_${id}" id="input_${id}" value="" />
<div id="hidden_${id}" style="display:none">
${value}
</div>
<input type="hidden" class="schematic" height="${height}" width="${width}" parts="${parts}" analyses="${analyses}" name="input_${id}" id="input_${id}" value="" initial_value=""/>
<div id="value_${id}" style="display:none">${value}</div>
<div id="initial_value_${id}" style="display:none">${initial_value}</div>
<script>
$("#input_${id}").attr("value",$("#hidden_${id}").text())
$("#input_${id}").attr("value",$("#value_${id}").text());
$("#input_${id}").attr("initial_value",$("#initial_value_${id}").text());
</script>
<span id="answer_${id}"></span>
% if state == 'unsubmitted':
......
......@@ -30,6 +30,10 @@ var ${ id }loc = -1;
function ${ id }goto(i) {
log_event("seq_goto", {'old':${id}loc, 'new':i,'id':'${id}'});
postJSON('/modx/sequential/${ id }/goto_position',
{'position' : i });
if (${ id }loc!=-1)
${ id }destroy_functions[ ${ id }loc ]();
$('#seq_content').html(${ id }contents[i]);
......@@ -72,5 +76,5 @@ $(function() {
}
$('#${ id }next').click(function(eo) { ${ id }next();});
$('#${ id }prev').click(function(eo) { ${ id }prev();});
${ id }goto(1);
${ id }goto( ${ position } );
});
<%inherit file="marketing.html" />
<header class="announcement home">
<div class="anouncement-wrapper">
<nav>
<a class="modal login" href="#login">Log In</a>
</nav>
<section>
<h1>MITx</h1>
<h2>An MIT Education Anywhere. For free.</h2>
</section>
</div>
</header>
<section class="index-content">
<h1> Terms of Service </h1>
<table><tr><td> Videos and Ungraded Exercises </td> <td> <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-sa/3.0/80x15.png" /></a><br />The videos on this page are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Graded Exercises</td><td>Graded exercises are All Rights Reserved until the due date. Past the due date, they are licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a>.</td></tr>
<tr><td>Textbook</td><td>Textbook is All Rights Reserved Elsevier. We are using it with permission. We apologize for the inclusion of proprietary work. </td></tr>
<tr><td>Student-generated content</td><td>Due to privacy concerns, all forum posts, wiki etc, and other student-created works are All Rights Reserved until released otherwise by MIT. </td></tr>
<tr><td>Source Code</td><td>Source code is All Rights Reserved during the beta offering. We expect to release it under a free and open license shortly thereafter. </td></tr>
</table>
<p>MIT and MITx are trademarks of the Massachusetts Instititute of
Technology, and may not be used without permission.
</section>
......@@ -30,7 +30,7 @@ function good() {
ajax_video=good;
loadNewVideo(streams["1.0"], ${ video_time });
loadNewVideo(streams["1.0"], ${ position });
function add_speed(key, stream) {
var id = 'speed_' + stream;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment