Commit c3b419c8 by Vik Paruchuri

Fix grammar feedback

parent 9ebb8e47
...@@ -29,6 +29,8 @@ class FeatureExtractor(object): ...@@ -29,6 +29,8 @@ class FeatureExtractor(object):
def __init__(self): def __init__(self):
self._good_pos_ngrams = self.get_good_pos_ngrams() self._good_pos_ngrams = self.get_good_pos_ngrams()
self.dict_initialized = False self.dict_initialized = False
self._spell_errors_per_character=0
self._grammar_errors_per_character=0
def initialize_dictionaries(self, e_set): def initialize_dictionaries(self, e_set):
""" """
...@@ -46,8 +48,8 @@ class FeatureExtractor(object): ...@@ -46,8 +48,8 @@ class FeatureExtractor(object):
self.dict_initialized = True self.dict_initialized = True
self._mean_spelling_errors=sum(e_set._spelling_errors)/float(len(e_set._spelling_errors)) self._mean_spelling_errors=sum(e_set._spelling_errors)/float(len(e_set._spelling_errors))
self._spell_errors_per_character=sum(e_set._spelling_errors)/float(sum([len(t) for t in e_set._text])) self._spell_errors_per_character=sum(e_set._spelling_errors)/float(sum([len(t) for t in e_set._text]))
self._grammar_errors_per_character=1-(sum(self._get_grammar_errors self._grammar_errors_per_character=(sum(self._get_grammar_errors
(e_set._pos,e_set._text,e_set._tokens)[0])/float(sum([len(t) for t in e_set._text]))) (e_set._pos,e_set._text,e_set._tokens))/float(sum([len(t) for t in e_set._text])))
bag_feats=self.gen_bag_feats(e_set) bag_feats=self.gen_bag_feats(e_set)
f_row_sum=numpy.sum(bag_feats[:,:]) f_row_sum=numpy.sum(bag_feats[:,:])
self._mean_f_prop=f_row_sum/float(sum([len(t) for t in e_set._text])) self._mean_f_prop=f_row_sum/float(sum([len(t) for t in e_set._text]))
...@@ -107,7 +109,11 @@ class FeatureExtractor(object): ...@@ -107,7 +109,11 @@ class FeatureExtractor(object):
fixed_bad_pos_tuples=[bad_pos_tuples[z] for z in xrange(0,len(bad_pos_tuples)) if z not in to_delete] fixed_bad_pos_tuples=[bad_pos_tuples[z] for z in xrange(0,len(bad_pos_tuples)) if z not in to_delete]
bad_pos_positions.append(fixed_bad_pos_tuples) bad_pos_positions.append(fixed_bad_pos_tuples)
overlap_ngrams = [z for z in pos_ngrams if z in self._good_pos_ngrams] overlap_ngrams = [z for z in pos_ngrams if z in self._good_pos_ngrams]
good_pos_tags.append(len(overlap_ngrams)) if (len(pos_ngrams)-len(overlap_ngrams))>0:
divisor=len(pos_ngrams)/len(pos_seq)
else:
divisor=1
good_pos_tags.append((len(pos_ngrams)-len(overlap_ngrams))/divisor)
return good_pos_tags,bad_pos_positions return good_pos_tags,bad_pos_positions
def gen_length_feats(self, e_set): def gen_length_feats(self, e_set):
...@@ -215,7 +221,9 @@ class FeatureExtractor(object): ...@@ -215,7 +221,9 @@ class FeatureExtractor(object):
for m in xrange(0,len(e_set._text)): for m in xrange(0,len(e_set._text)):
individual_feedback={'grammar' : "Grammar: Ok.", 'spelling' : "Spelling: Ok.", individual_feedback={'grammar' : "Grammar: Ok.", 'spelling' : "Spelling: Ok.",
'topicality' : "Topicality: Ok.", 'markup_text' : "", 'topicality' : "Topicality: Ok.", 'markup_text' : "",
'prompt_overlap' : "Prompt Overlap: Ok."} 'prompt_overlap' : "Prompt Overlap: Ok.",
'grammar_per_char' : set_grammar_per_character[m],
'spelling_per_char' : set_spell_errors_per_character[m]}
markup_tokens=e_set._markup_text[m].split(" ") markup_tokens=e_set._markup_text[m].split(" ")
#This loop ensures that sequences of bad grammar get put together into one sequence instead of staying #This loop ensures that sequences of bad grammar get put together into one sequence instead of staying
......
...@@ -13,6 +13,9 @@ import nltk ...@@ -13,6 +13,9 @@ import nltk
import random import random
import pickle import pickle
from path import path from path import path
import logging
log=logging.getLogger(__name__)
def create_model_path(model_path): def create_model_path(model_path):
if not model_path.startswith("/") and not model_path.startswith("models/"): if not model_path.startswith("/") and not model_path.startswith("models/"):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment