Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
E
ease
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
edx
ease
Commits
4f1c10ca
Commit
4f1c10ca
authored
Oct 24, 2012
by
Vik Paruchuri
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
documenting util_functions
parent
09b8c904
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
7 deletions
+77
-7
util_functions.py
+77
-7
No files found.
util_functions.py
View file @
4f1c10ca
...
@@ -52,12 +52,17 @@ def sub_chars(string):
...
@@ -52,12 +52,17 @@ def sub_chars(string):
def
spell_correct
(
string
):
def
spell_correct
(
string
):
"""
"""
Uses aspell to spell correct an input string.
Uses aspell to spell correct an input string.
Requires aspell to be installed and added to the path.
Returns the spell corrected string if aspell is found, original string if not.
"""
"""
f
=
open
(
'tmpfile'
,
'w'
)
f
=
open
(
'tmpfile'
,
'w'
)
f
.
write
(
string
)
f
.
write
(
string
)
f_path
=
os
.
path
.
abspath
(
f
.
name
)
f_path
=
os
.
path
.
abspath
(
f
.
name
)
f
.
close
()
f
.
close
()
try
:
p
=
os
.
popen
(
aspell_path
+
" -a < "
+
f_path
+
" --sug-mode=ultra"
)
p
=
os
.
popen
(
aspell_path
+
" -a < "
+
f_path
+
" --sug-mode=ultra"
)
except
:
return
string
incorrect
=
p
.
readlines
()
incorrect
=
p
.
readlines
()
p
.
close
()
p
.
close
()
incorrect_words
=
list
()
incorrect_words
=
list
()
...
@@ -85,22 +90,35 @@ def spell_correct(string):
...
@@ -85,22 +90,35 @@ def spell_correct(string):
return
newstring
return
newstring
def
ngrams
(
tokens
,
MIN_N
,
MAX_N
):
def
ngrams
(
tokens
,
min_n
,
max_n
):
"""
Generates ngrams(word sequences of fixed length) from an input token sequence.
tokens is a list of words.
min_n is the minimum length of an ngram to return.
max_n is the maximum length of an ngram to return.
returns a list of ngrams (words separated by a space)
"""
all_ngrams
=
list
()
all_ngrams
=
list
()
n_tokens
=
len
(
tokens
)
n_tokens
=
len
(
tokens
)
for
i
in
xrange
(
n_tokens
):
for
i
in
xrange
(
n_tokens
):
for
j
in
xrange
(
i
+
MIN_N
,
min
(
n_tokens
,
i
+
MAX_N
)
+
1
):
for
j
in
xrange
(
i
+
min_n
,
min
(
n_tokens
,
i
+
max_n
)
+
1
):
all_ngrams
.
append
(
" "
.
join
(
tokens
[
i
:
j
]))
all_ngrams
.
append
(
" "
.
join
(
tokens
[
i
:
j
]))
return
all_ngrams
return
all_ngrams
def
f7
(
seq
):
def
f7
(
seq
):
"""
Makes a list unique
"""
seen
=
set
()
seen
=
set
()
seen_add
=
seen
.
add
seen_add
=
seen
.
add
return
[
x
for
x
in
seq
if
x
not
in
seen
and
not
seen_add
(
x
)]
return
[
x
for
x
in
seq
if
x
not
in
seen
and
not
seen_add
(
x
)]
def
count_list
(
the_list
):
def
count_list
(
the_list
):
"""
Generates a count of the number of times each unique item appears in a list
"""
count
=
the_list
.
count
count
=
the_list
.
count
result
=
[(
item
,
count
(
item
))
for
item
in
set
(
the_list
)]
result
=
[(
item
,
count
(
item
))
for
item
in
set
(
the_list
)]
result
.
sort
()
result
.
sort
()
...
@@ -108,6 +126,12 @@ def count_list(the_list):
...
@@ -108,6 +126,12 @@ def count_list(the_list):
def
regenerate_good_tokens
(
string
):
def
regenerate_good_tokens
(
string
):
"""
Given an input string, part of speech tags the string, then generates a list of
ngrams that appear in the string.
Used to define grammatically correct part of speech tag sequences.
Returns a list of part of speech tag sequences.
"""
toks
=
nltk
.
word_tokenize
(
string
)
toks
=
nltk
.
word_tokenize
(
string
)
pos_string
=
nltk
.
pos_tag
(
toks
)
pos_string
=
nltk
.
pos_tag
(
toks
)
pos_seq
=
[
tag
[
1
]
for
tag
in
pos_string
]
pos_seq
=
[
tag
[
1
]
for
tag
in
pos_string
]
...
@@ -116,7 +140,16 @@ def regenerate_good_tokens(string):
...
@@ -116,7 +140,16 @@ def regenerate_good_tokens(string):
return
sel_pos_ngrams
return
sel_pos_ngrams
def
get_vocab
(
text
,
score
,
max_feats
=
750
,
min_length
=
100
):
def
get_vocab
(
text
,
score
,
max_feats
=
750
,
max_feats2
=
200
):
"""
Uses a fisher test to find words that are significant in that they separate
high scoring essays from low scoring essays.
text is a list of input essays.
score is a list of scores, with score[n] corresponding to text[n]
max_feats is the maximum number of features to consider in the first pass
max_feats2 is the maximum number of features to consider in the second (final) pass
Returns a list of words that constitute the significant vocabulary
"""
dict
=
CountVectorizer
(
min_n
=
1
,
max_n
=
2
,
max_features
=
max_feats
)
dict
=
CountVectorizer
(
min_n
=
1
,
max_n
=
2
,
max_features
=
max_feats
)
dict_mat
=
dict
.
fit_transform
(
text
)
dict_mat
=
dict
.
fit_transform
(
text
)
set_score
=
numpy
.
asarray
(
score
,
dtype
=
numpy
.
int
)
set_score
=
numpy
.
asarray
(
score
,
dtype
=
numpy
.
int
)
...
@@ -141,8 +174,8 @@ def get_vocab(text, score, max_feats=750, min_length=100):
...
@@ -141,8 +174,8 @@ def get_vocab(text, score, max_feats=750, min_length=100):
fish_vals
.
append
(
fish_val
)
fish_vals
.
append
(
fish_val
)
cutoff
=
1
cutoff
=
1
if
(
len
(
fish_vals
)
>
200
):
if
(
len
(
fish_vals
)
>
max_feats2
):
cutoff
=
sorted
(
fish_vals
)[
200
]
cutoff
=
sorted
(
fish_vals
)[
max_feats2
]
good_cols
=
numpy
.
asarray
([
num
for
num
in
range
(
0
,
dict_mat
.
shape
[
1
])
if
fish_vals
[
num
]
<=
cutoff
])
good_cols
=
numpy
.
asarray
([
num
for
num
in
range
(
0
,
dict_mat
.
shape
[
1
])
if
fish_vals
[
num
]
<=
cutoff
])
getVar
=
lambda
searchList
,
ind
:
[
searchList
[
i
]
for
i
in
ind
]
getVar
=
lambda
searchList
,
ind
:
[
searchList
[
i
]
for
i
in
ind
]
...
@@ -152,6 +185,10 @@ def get_vocab(text, score, max_feats=750, min_length=100):
...
@@ -152,6 +185,10 @@ def get_vocab(text, score, max_feats=750, min_length=100):
def
edit_distance
(
s1
,
s2
):
def
edit_distance
(
s1
,
s2
):
"""
Calculates string edit distance between string 1 and string 2.
Deletion, insertion, substitution, and transposition all increase edit distance.
"""
d
=
{}
d
=
{}
lenstr1
=
len
(
s1
)
lenstr1
=
len
(
s1
)
lenstr2
=
len
(
s2
)
lenstr2
=
len
(
s2
)
...
@@ -188,6 +225,14 @@ class InputError(Error):
...
@@ -188,6 +225,14 @@ class InputError(Error):
def
gen_cv_preds
(
clf
,
arr
,
sel_score
,
num_chunks
=
3
):
def
gen_cv_preds
(
clf
,
arr
,
sel_score
,
num_chunks
=
3
):
"""
Generates cross validated predictions using an input classifier and data.
clf is a classifier that implements that implements the fit and predict methods.
arr is the input data array (X)
sel_score is the target list (y). y[n] corresponds to X[n,:]
num_chunks is the number of cross validation folds to use
Returns an array of the predictions where prediction[n] corresponds to X[n,:]
"""
cv_len
=
int
(
math
.
floor
(
len
(
sel_score
)
/
num_chunks
))
cv_len
=
int
(
math
.
floor
(
len
(
sel_score
)
/
num_chunks
))
chunks
=
[]
chunks
=
[]
for
i
in
range
(
0
,
num_chunks
):
for
i
in
range
(
0
,
num_chunks
):
...
@@ -208,13 +253,26 @@ def gen_cv_preds(clf, arr, sel_score, num_chunks=3):
...
@@ -208,13 +253,26 @@ def gen_cv_preds(clf, arr, sel_score, num_chunks=3):
return
(
all_preds
)
return
(
all_preds
)
def
gen_model
(
clf
,
arr
,
sel_score
,
num_chunks
=
3
):
def
gen_model
(
clf
,
arr
,
sel_score
):
"""
Fits a classifier to data and a target score
clf is an input classifier that implements the fit method.
arr is a data array(X)
sel_score is the target list (y) where y[n] corresponds to X[n,:]
sim_fit is not a useful return value. Instead the clf is the useful output.
"""
set_score
=
numpy
.
asarray
(
sel_score
,
dtype
=
numpy
.
int
)
set_score
=
numpy
.
asarray
(
sel_score
,
dtype
=
numpy
.
int
)
sim_fit
=
clf
.
fit
(
arr
,
set_score
)
sim_fit
=
clf
.
fit
(
arr
,
set_score
)
return
(
sim_fit
)
return
(
sim_fit
)
def
gen_preds
(
clf
,
arr
,
num_chunks
=
3
):
def
gen_preds
(
clf
,
arr
):
"""
Generates predictions on a novel data array using a fit classifier
clf is a classifier that has already been fit
arr is a data array identical in dimension to the array clf was trained on
Returns the array of predictions.
"""
if
(
hasattr
(
clf
,
"predict_proba"
)):
if
(
hasattr
(
clf
,
"predict_proba"
)):
ret
=
clf
.
predict
(
arr
)
ret
=
clf
.
predict
(
arr
)
#pred_score=preds.argmax(1)+min(x._score)
#pred_score=preds.argmax(1)+min(x._score)
...
@@ -224,6 +282,10 @@ def gen_preds(clf, arr, num_chunks=3):
...
@@ -224,6 +282,10 @@ def gen_preds(clf, arr, num_chunks=3):
def
calc_list_average
(
l
):
def
calc_list_average
(
l
):
"""
Calculates the average value of a list of numbers
Returns a float
"""
total
=
0.0
total
=
0.0
for
value
in
l
:
for
value
in
l
:
total
+=
value
total
+=
value
...
@@ -232,6 +294,14 @@ def calc_list_average(l):
...
@@ -232,6 +294,14 @@ def calc_list_average(l):
stdev
=
lambda
d
:
(
sum
((
x
-
1.
*
sum
(
d
)
/
len
(
d
))
**
2
for
x
in
d
)
/
(
1.
*
(
len
(
d
)
-
1
)))
**
.
5
stdev
=
lambda
d
:
(
sum
((
x
-
1.
*
sum
(
d
)
/
len
(
d
))
**
2
for
x
in
d
)
/
(
1.
*
(
len
(
d
)
-
1
)))
**
.
5
def
quadratic_weighted_kappa
(
rater_a
,
rater_b
,
min_rating
=
None
,
max_rating
=
None
):
def
quadratic_weighted_kappa
(
rater_a
,
rater_b
,
min_rating
=
None
,
max_rating
=
None
):
"""
Calculates kappa correlation between rater_a and rater_b.
Kappa measures how well 2 quantities vary together.
rater_a is a list of rater a scores
rater_b is a list of rater b scores
min_rating is an optional argument describing the minimum rating possible on the data set
max_rating is an optional argument describing the maximum rating possible on the data set
"""
assert
(
len
(
rater_a
)
==
len
(
rater_b
))
assert
(
len
(
rater_a
)
==
len
(
rater_b
))
if
min_rating
is
None
:
if
min_rating
is
None
:
min_rating
=
min
(
rater_a
+
rater_b
)
min_rating
=
min
(
rater_a
+
rater_b
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment